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We construct a relativistic chiral nucleon-nucleon interaction up to the next-to-next-to-leading order in
covariant baryon chiral perturbation theory. We show that a good description of the np phase shifts up to
T lab ¼ 200 MeV and even higher can be achieved with a χ̃2=d:o:f: less than 1. Both the next-to-leading-
order results and the next-to-next-to-leading-order results describe the phase shifts equally well up to
T lab ¼ 200 MeV, but for higher energies, the latter behaves better, showing satisfactory convergence. The
relativistic chiral potential provides the most essential inputs for relativistic ab initio studies of nuclear
structure and reactions, which has been in need for almost two decades.
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The nucleon-nucleon (NN) interaction plays an essential
role in our microscopic understanding of nuclear physics.
Starting from the pioneering works of Weinberg [1–3],
chiral effective field theory (ChEFT) has been successfully
applied to derive the NN interaction. Nowadays, the so-
called chiral nuclear forces have been constructed up to the
fifth order [4–6] and sixth order [7] and reached the level
of the most refined phenomenological forces, such as
Argonne V18 [8] and CD-Bonn [9], and have become
the de facto standard in ab initio nuclear structure and
reaction studies [10–13].
Nonetheless, these forces are based on the nonrelativistic

(NR) heavy baryon chiral perturbation theory (ChPT) and
cannot be used in relativistic many-body studies [14–18],
for which till now only the Bonn potential [19] has been
widely used [20]. In addition, there are continuing dis-
cussions on the relevance of renormalization group invari-
ance and how the Weinberg power counting should be
modified to allow for proper nonperturbative renormaliza-
tion group invariance [21,22]. Lorentz covariance, as one of
the most fundamental requirements of nature, may play a
role here. It is particularly inspiring to note that in the one-
baryon sector, covariant baryon ChPT has been shown to
provide new perspectives on a number of long-standing
puzzles, such as baryon magnetic moments [23], Compton
scattering off protons [24], pion-nucleon scattering [25],
and baryon masses [26,27]. See Ref. [28] for a short review.
Recently, a covariant power counting approach similar to

the extended-on-mass-shell scheme in the one-baryon
sector [29,30] was proposed to describe the NN interaction

[31,32]. (We note that a modified Weinberg approach to the
NN scattering problem was proposed in Ref. [33], which
employs time-ordered perturbation theory and relies on the
manifestly Lorentz-invariant effective Lagrangian and aims
to improve the UV behavior of Weinberg’s approach [34–
36].) At leading order (LO), the covariant scheme has been
successfully tested in the NN system [31,37–40], hyperon-
nucleon system [41–46], and ΛcN system [47,48]. In
addition to providing already a reasonable description of
the J ¼ 0; 1 np phase shifts at LO, it also shows some
interesting features of proper effective field theories. In
Ref. [37], it was shown that for the 1S0 partial wave, some
of the typical low-energy features can be reproduced at LO,
contrary to the conventional Weinberg approach. In addi-
tion, it also shows improved renormalization group invari-
ance, for example, in the 3P0 channel [40]. In Ref. [49], it
was shown in a hybrid phenomenological approach that the
LO relativistic three-body interaction leads to a satisfactory
description of polarized pd scattering data in the whole
energy range below the deuteron breakup threshold, solv-
ing the long-standing Ay puzzle thanks to the new terms
considered in the 3N force. Furthermore, in Ref. [50], it
was shown that the relativistic effects in the perturbative
two-pion-exchange (TPE) contributions do improve the
description of the peripheral NN scattering data compared
to their nonrelativistic counterparts. In Ref. [51], the
same feature is found also for the nonperturbative TPE
contributions.
Nonetheless, for realistic studies of nuclear structure and

reactions, the relativistic chiral force has to be constructed
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to higher chiral orders. Furthermore, a complete under-
standing of the relativistic chiral nuclear force beyond
leading order is also of high relevance. For such purposes,
in the present work, we construct the first accurate
relativistic NN interaction up to the next-to-next-to-
leading order (NNLO). (Recent studies show that the
NNLO nonrelativistic chiral forces can provide reli-
able inputs already, but the N3LO forces yield smaller
uncertainties [52]).
In order to take into account the nonperturbative nature

of the NN interaction, we solve the following relativistic
Blankenbecler-Sugar equation [53],

Tðp0; p; sÞ ¼ Vðp0; p; sÞ þ
Z

d3k
ð2πÞ3 Vðp

0; k; sÞ

×
m2

Ek

1

q2c:m: − k2 − iϵ
Tðk; p; sÞ; ð1Þ

where jqc:m:j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

p
is the nucleon momentum on

the mass shell in the center-of-mass (c.m.) frame, and a
sharp cutoff Λ is introduced to regularize the potential
and its value will be specified later. The momenta of
the incoming, outgoing, and intermediate nucleons are
depicted in Fig. 1, consistent with the 3D reduction of
the Bethe-Salpeter equation to the Blankenbecler-Sugar
equation [54].
Up to NNLO, the relativistic chiral potential consists of

the following terms,

V ¼ VLO
CT þVNLO

CT þVOPEþVNLO
TPE þVNNLO

TPE −VIOPE; ð2Þ

in which the first two terms refer to the LO [Oðp0Þ] and
NLO [Oðp2Þ] contact contributions, while the next three
terms denote the one-pion exchange (OPE), leading, and
subleading TPE contributions. The last term represents the
iterated OPE contribution.
The chiral effective Lagrangians for the nucleon-nucleon

interaction in covariant baryon ChPT have been con-
structed up to Oðp4Þ in Ref. [32]. There are four contact
terms at LO, 13 terms at NLO, and no contact terms at
NNLO. As is argued in the Supplemental Material [55], the
large subleading TPE contributions affect the descriptions
of some higher partial waves, especially 3P2. Relevant
discussions on the nonrelativistic cases can be found in
Refs. [56–58]. In order to partially compensate the large
subleading TPE contributions to the 3P2 channel, we
promote two nominal N3LO contact terms to NLO.

Considering that in our covariant power counting, the
NLO contact terms already contain terms of Oðp4Þ as is
depicted in the Supplemental Material [55], we promote the
same terms but originally counted as of N3LO to NLO for
the 3P2-3F2 partial waves. This is equivalent to removing
part of the correlations between the higher order contact
terms for 3P2-3F2 and the other J ¼ 2 partial waves.
Therefore, in the end, we have in total 19 low-energy
constants (LECs) up to NNLO. We note that this number is
larger than that of the nonrelativistic NNLO potential
(9) but smaller than that of N3LO (24) [58,59]. (It should
be noted that the two isospin-violating LECs are not
included here. Furthermore, the results of Ref. [59] with
which we compare were obtained by setting c2;3;4 semi-
free.) In our relativistic framework, the 19 LECs contribute
to all the partial waves with total angular momentum J ≤ 2,
which makes it impossible to reorganize the LECs accord-
ing to partial waves, different from the nonrelativistic cases.
(Note that in the nonrelativistic framework, there is no LEC
for the 3F2 partial wave up to N3LO.) We refer to the
Supplemental Material [55] for the explicit expressions of
the LO and NLO contact potentials.
For the treatment of nonperturbative OPE and TPE

contributions, we refer to Ref. [51]. In Table I, we show
the values of the LECs needed to evaluate the OPE and TPE
contributions.
An important feature of ChEFT is that it allows for

reliable uncertainty quantification. In the literature, two
different ways have been used to estimate the truncation
uncertainties of chiral nuclear forces. One is varying the
cutoff in a reasonable range, for example, from 450 to
550 MeV [11]. The other is to treat the difference between
the optimal results obtained at different orders as the
estimate of truncation uncertainties [4]. Recently, a general
Bayesian model has been proposed [61–63] and applied in
the latest nonrelativistic studies [64–66], which we follow
in the present work. This method is statistically well
established and can provide a statistical interpretation for
the estimated uncertainties. For a detailed account of the
implementation of this approach in the present study, see
the Supplemental Material [55].
In Ref. [51], we showed that the higher partial waves

which do not receive contact contributions up to NNLO can
be well described with a cutoff of 0.9 GeV. In addition, only
the 3D3 partial wave is sensitive to the cutoff, which implies
that higher order LECs are needed for this particular partial
wave to achieve renormalization group invariance. As a
result, in the fitting of the LECs at NLO and NNLO, we fix
the cutoff at 0.9 GeV.

FIG. 1. Relativistic kinematics of nucleon-nucleon scattering.

TABLE I. Decay constant fπ (in units of MeV) [11], coupling
constant gA [11], and NLO πN couplings (in units of GeV−1) [60]
adopted for evaluating the OPE and TPE diagrams.

c1 c2 c3 c4 fπ gA

−1.39 4.01 −6.61 3.92 92.4 1.29
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Following the strategy adopted in nonrelativistic studies,
e.g., Refs. [4,67], we perform a global fit to the np phase
shifts for all the partial waves with total angular momentum
J ≤ 2 [68]. (For a justification of direct fits to phase shifts,
see Ref. [69]. An alternative fit to the results of the Granada
partial wave analysis [70–72] is given in the Supplemental
Material [55].) For each partial wave, we choose eight data
points with laboratory kinetic energy T lab ¼ 1, 5, 10, 25,

50, 100, 150, 200 MeV for the fitting. The χ2-like function
to be minimized, χ̃2, is defined as

χ̃2 ¼
X
i

ðδi − δiPWA93Þ2; ð3Þ

where δi are theoretical phase shifts or mixing angles, and
δiPWA93 are their empirical PWA93 counterparts [68]. A few

FIG. 2. NN phase shifts for partial waves with J ≤ 2. The red solid lines denote the relativistic NNLO results obtained with a cutoff of
Λ ¼ 0.9 GeV, and the blue dashed lines denote the relativistic NLO results obtained with a smaller cutoff of Λ ¼ 0.6 GeV. The
corresponding bands represent the uncertainties for a DoB level of 68%. For comparison, we also show the LO relativistic results (black
dotted lines) obtained with a cutoff of Λ ¼ 0.6 GeV and the two sets of nonrelativistic N3LO results NR-N3LO Idaho (Λ ¼ 0.5 GeV,
green dash-dotted lines) [11,59] and NR-N3LO EKM (cutoff ¼ 0.9 fm, magenta short-dotted lines) [4,73]. The black dots denote the
PWA93 phase shifts [68]. The shaded regions denote that those data are not fitted, and the corresponding relativistic results are
predictions.
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remarks are in order. First, the χ̃2 defined above does not
have proper statistical meaning, as no uncertainties are
assigned, and the number of data fitted are a bit arbitrary
(eight for each partial wave in the present study). Second, as
the same uncertainties for the phase shifts and mixing angle
are assumed, this necessarily put more weight on those
partial waves of large magnitude, for example, 1S0 and 3S1.
The so-obtained fitting results are shown in Fig. 2, where

the theoretical uncertainties are obtained via the Bayesian
model explained in the Supplemental Material [55] for a
Degree of Belief (DoB) level of 68%. The corresponding
LECs are given in Table II. For comparison, we also
show the nonrelativistic N3LO results obtained with differ-
ent strategies for regularizing chiral potentials from
Refs. [11,59] and Refs. [4,73], which are denoted as
NR-N3LO Idaho and NR-N3LO EKM, respectively.
Comparing the LO, NLO, and NNLO results as well as
the uncertainties, it is clear that the chiral results are
converging reasonably well. In addition, the LECs look
quite natural, particularly those at NNLO, as the magnitude
of most of them is between 1 and 10, though O1, O14, O15,
and O16 are perhaps a little bit large, but not abnor-
mally large.
First, we notice that the NLO and NNLO relativistic

results describe the np phase shifts very well up to
T lab ¼ 200 MeV, at a level similar to the nonrelativistic
N3LO results. Particularly interesting is that the NLO and
the NNLO results also agree well with each other for
T lab ≤ 200 MeV, while the NNLO results are in better
agreement the PWA93 data for larger kinetic energies. This
demonstrates that the chiral series converges well. On the
other hand, for 3F2, the NLO results are better, which can be
attributed to the compromise that one has to make to fit all
the J ¼ 2 partial waves with five LECs to balance the large
contributions of subleading TPE. It can be largely improved
once the correlation between the D waves with J ¼ 2 and
3P2-3F2 are removed; i.e., the D waves and 3P2-3F2 are
fitted separately or the cutoff is slightly modified. We note

that in obtaining the NR-N3LO Idaho results, the phase
shifts of this channel were lowered by a careful fine-tuning
of c2 and c4 [59].
The χ̃2’s for each partial wave are given in Table III.

Judging from the total χ2, the quality of the relativistic fits
is compatible to the nonrelativistic N3LO results.
Comparing the NR-N3LO EKM results with the relativistic
NNLO results, we find that although the total χ̃2’s are
similar, they originate from different partial waves. The
largest contribution to the total χ̃2 of NR-N3LO EKM
comes from the 1S0 partial wave, while that of our NNLO
results originates from the 3D2 partial wave. It should also
be noted that if we set the cutoff at 0.8 GeV, we can achieve
a total χ̃2 as small as 5.3 (see the Supplemental Material
[55] for details), which is even smaller than that of
NR-N3LO Idaho, which is about 9. However, as shown
in Ref. [51], the 3D3 partial wave cannot be well described
with a cutoff of 0.8 GeV. Therefore, in the present work, we
stick to the cutoff of 0.9 GeV [74].
To summarize, we constructed a relativistic chiral

nucleon-nucleon interaction up to the next-to-next-to-lead-
ing order in covariant baryon chiral perturbation theory.
The 19 low-energy constants were fixed by fitting to all the
partial wave phase shifts with total angular momentum
J ≤ 2. We obtained a good description of the PWA93 phase
shifts. The next-to-leading-order and the next-to-next-to-
leading-order results agree well with each other for
T lab ≤ 200 MeV, while at higher energies the NNLO
results agree better with the PWA93 phase shifts. This
demonstrated the convergence of the covariant chiral
expansions. Given the quality already achieved in describ-
ing the np phase shifts, the NNLO relativistic chiral NN
interaction provides the much wanted inputs for relativistic
ab initio nuclear structure and reaction studies. In particu-
lar, it may provide new insights into many long-standing
problems, e.g., the Ay puzzle, in combination with the
leading order relativistic 3N chiral force explored in
Ref. [49], which appears at NNLO.

TABLE II. LECs (in units of 104 GeV−2) for the relativistic LO, NLO, and NNLO results shown in Fig. 2.

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 D1 D2

LO −1.32 −0.21 −0.93 0.31
NLO −2.62 9.45 −5.42 −6.05 30.09 9.02 −9.19 8.74 4.74 7.02 3.52 11.42 −6.03 −20.55 −4.99 −12.80 6.30 0.42 0.28
NNLO −14.83 −2.25 −4.85 6.24 −0.82 1.96 −6.89 7.19 1.44 3.50 −8.10 −9.38 −4.33 −12.89 −12.26 −11.69 3.86 −1.88 −0.63

TABLE III. χ̃2 ¼ P
iðδi − δiPWA93Þ2 of different chiral forces for partial waves up to J ≤ 2.

Total 1S0 3P0
1P1

3P1
3S1 3D1 ϵ1 1D2

3D2
3P2

3F2 ϵ2

NLO 17.02 1.02 7.04 0.46 0.33 1.80 1.69 0.15 2.18 1.35 0.95 0.01 0.04
NNLO 16.61 0.18 0.30 1.07 1.55 3.36 0.26 0.03 0.01 9.56 0.01 0.27 0.01
NR-N3LO Idaho 8.84 1.53 0.30 2.41 0.04 2.33 1.00 0.02 0.57 0.42 0.17 0.03 0.02
NR-N3LO EKM 16.08 13.45 0.29 0.34 0.06 0.01 0.13 0.01 0.02 0.43 0.12 1.22 0.00
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