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Approximate symmetries abound in nature. If these symmetries are also spontaneously broken, the
would-be Goldstone modes acquire a small mass, or inverse correlation length, and are referred to as
pseudo-Goldstones. At nonzero temperature, the effects of dissipation can be captured by hydrodynamics
at sufficiently long scales compared to the local equilibrium. Here, we show that, in the limit of weak
explicit breaking, locality of hydrodynamics implies that the damping of pseudo-Goldstones is completely
determined by their mass and diffusive transport coefficients. We present many applications: superfluids,
QCD in the chiral limit, Wigner crystal and density wave phases in the presence of an external magnetic
field or not, nematic phases, and (anti)ferromagnets. For electronic density wave phases, pseudo-Goldstone
damping generates a contribution to the resistivity independent of the strength of disorder, which can have a
linear temperature dependence provided the associated diffusivity saturates a bound. This is reminiscent of
the phenomenology of strange metal high-Tc superconductors, where charge density waves are observed
across the phase diagram.
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In the simplest setting, collective excitations associated
with Goldstone modes for spontaneously broken sym-
metries disperse linearly ωðqÞ ≃�csq. At finite temper-
ature, dissipation enters to leading order in the wave vector
q as a diffusive broadening of this ballistic sound mode
ωðqÞ ≃�csq − iDq2=2. The softness of these modes as
q → 0 is protected by the symmetry and its spontaneous
breaking. When the symmetry is only approximate, the
collective excitation is sometimes referred to as a pseudo-
Goldstone mode and acquires a finite correlation length
1=qo. At finite temperature, it can also have a nonzero
relaxation rate, so that the pole is located schematically at
limq→0 ωðqÞ ≃�csqo − iΩ=2. The main result of this
Letter is to show that these transport coefficients are not
all independent in the limit of weak symmetry breaking
qo → 0. We derive the following relation for the pseudo-
Goldstone damping rate:

Ω ¼ q2oDþOðq4oÞ: ð1Þ

Strictly speaking, there are typically several contributions
to the attenuation D and to the damping Ω, which can be

obtained using various Kubo formulas; we will clarify
below which ones satisfy a relation of the form (1).
In the hydrodynamic regime of thermalizing systems and

away from thermal phase transitions, there are no long-
range excitations other than those accounted for by global
symmetries. A basic property that follows is locality of
constitutive relations, i.e., expansions of operators (typi-
cally currents) in terms of conserved densities or Goldstone
fields, and sources. As we will show, when the thermal
correlation length is large (which happens when an
approximate symmetry is spontaneously broken), the con-
dition that sources enter locally in constitutive relations is
not automatically satisfied in the Kadanoff-Martin
approach to computing hydrodynamic response functions
[1] and must be imposed by hand, leading to Eq. (1). The
breakdown of locality is also crisply encapsulated in the
noncommutativity between the q → 0 and qo → 0 limits in
the Kubo formulas that define Ω and D. Restoring locality
with Eq. (1) restores the commutativity of limits.
Given the prevalence of Goldstones for approximate

symmetries in nature and in experiments, relations of the
form (1) have many applications; we survey a variety of
them: superfluids, QCD in the chiral limit, Wigner crystals
including in the presence of an external magnetic field,
nematic phases, and (anti)ferromagnets; in so doing, we
extend our result to Goldstone excitations with more
complicated dispersion relations. We comment on the
implications of Eq. (1) for strange metallic transport in
high-temperature superconductors (HTSC). In the main
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text, we give a detailed presentation for the case of a global
U(1) symmetry and only sketch other cases. We provide
many technical details in Supplemental Material [2].
Damping of pseudo-Goldstones at finite temperature has

been studied for some time [3,4,28–37], although the
relation (1) was not recognized at the time. Instead, to
the best of our knowledge, Eq. (1) was first demonstrated in
a gauge-gravity duality model of translation symmetry
breaking [38]; see also for subsequent studies [5–10,39–
45]. Equation (1) was also noted in the hydrodynamic
description of soft pions in Ref. [46]. Previous efforts
toward proving Eq. (1) include Refs. [8,11,12], and we
comment on them in Supplemental Material [2].
In the absence of explicit breaking, Goldstones can be

damped by the proliferation of vortices (and, more gen-
erally, topological defects for the spontaneously broken
symmetry) which relax the winding of the phase [47,48]
and contribute to Ω [3,49]. Here, we will assume that
vortices do not play any significant role and, in particular,
that we are far away from any melting transition, so that Ω
is perturbatively activated when the symmetry is weakly
explicitly broken.
Locality of constitutive relations.—In thermalizing sys-

tems, the slow excitations which govern the late time
dynamics are long-wavelength modulations of conserved
densities, satisfying continuity relations of the form

_naðx; tÞ þ∇ · jaðx; tÞ ¼ 0; ð2Þ

where a ¼ 1; 2;… labels the various densities and a dot
denotes a time derivative. The current densities ja are not
themselves slow operators—their time derivatives are not
suppressed by gradients—but as any operator they can be
effectively expanded locally in terms of the slow densities
at late times. These expansions are referred to as con-
stitutive relations; to linear order in the densities, they read
schematically (we shall ignore nonlinear hydrodynamic
fluctuations in this Letter)

j ¼ α0nþ α1∇nþ α2∇2nþ � � � ; ð3Þ

where αi are a priori unknown coefficients. This expression
should be understood as an effective operator equation:
Although it is not valid microscopically, correlation func-
tions involving operators of either side of the equation
match in the hydrodynamic regime. The conservation law
(2) then produces an equation of motion for the densities

_naðq; tÞ þMabðqÞnbðq; tÞ ¼ 0; ð4Þ

where we have defined nðq; tÞ ¼ R
ddxeiqxnðx; tÞ and

summation over repeated indices is implied. As usual,
external sources are introduced by deforming the
Hamiltonian

H0 → HðtÞ ¼ H0 −
Z

ddxδμaðx; tÞnaðx; tÞ ð5Þ

and enter in the conservation equations as (see [2])

_naðq; tÞ þMabðqÞ½nbðq; tÞ − χbcðqÞδμcðq; tÞ� ¼ 0: ð6Þ

χðqÞ is the matrix of static susceptibilities,

χabðx − x0Þ≡ −
δ2W

δμaðxÞδμbðx0Þ ; ð7Þ

where W ¼ −T logZ ¼ −T log Tre−βH is the equilibrium
thermal free energy andH is given by Eq. (5) but with time-
independent sources δμðx; tÞ ¼ δμðxÞ. The matrices χ and
M satisfy various positivity and symmetry conditions due
to, e.g., positivity of dissipation or Onsager relations—
these are well known, and we will not comment further
upon them.
We are now ready to state our constraint: Eq. (6) must be

a (sufficiently) local function of the densities and sources.
By local, we mean that it must satisfy an expansion in
momentum q, with higher powers of q suppressed by a
scale which sets the cutoff of hydrodynamics. The matrix
MabðqÞ satisfies this condition, since it originated from the
local constitutive relation (3). What about MabðqÞχbcðqÞ?
Static susceptibilities are local up to the thermal correlation
length ξ (sometimes called inverse thermal mass). This
length scale is usually smaller than the length scales of
interest in hydrodynamics, except in two situations: close to
thermal phase transitions and in the presence of Goldstone
or pseudo-Goldstone modes. (One more exotic situation
where this may arise is in systems with approximate dipole
conservation [50,51].) In these situations, locality of Eq. (6)
in the hydrodynamic regime is not automatic and can lead
to constraints on transport parameters. We derive such a
constraint in the concrete example of a conserved U(1) in
the following section.
Locality of constitutive relations reflects the central

assumption of hydrodynamics in thermalizing systems,
namely, that all long-lived and long-range excitations are
accounted for by symmetries (as densities or Goldstone
modes), and these are solely responsible for nonanalytic-
ities in thermal response functions at small wave vector q
and frequency ω. Since none of these modes have been
integrated out when writing expressions such as Eq. (3) [or
Eq. (6) with sources], these expressions must be local.
Implication for pseudo-Goldstone modes.—The simplest

setting involving a pseudo-Goldstone field is a system with
a single approximate continuous symmetry [U(1) or R]
which is spontaneously broken. This could describe, e.g.,
the ordered phase of the XY model in the presence of a
small symmetry-breaking deformation. At finite temper-
ature, the system will thermalize and hydrodynamics will
emerge—the hydrodynamic modes are the charge density n
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associated with the symmetry, its conjugate the Goldstone
phase ϕ, and energy and momentum densities. Energy and
momentum densities will not play an important role here,
and we shall ignore them (or assume they decouple) for
simplicity.
The hydrodynamics of this system fits in the general

framework established in the previous section, with n and ϕ
playing the role of densities. (∇ϕ is, in fact, the density of a
higher-form symmetry associated with conservation of
winding, with the Josephson relation corresponding to
the constitutive relation for the higher-form current _ϕ
[52,53].) Consider first the situation where the symmetry
is exact, and the hydrodynamic theory is well known [13].
The matrix of susceptibilities (7) is obtained by coupling
the theory to static sources H0 → H:

H ¼ H0 −
Z

ddxδμðxÞnðx; tÞ þ δsϕðxÞϕðx; tÞ: ð8Þ

Since the thermal correlation length diverges due to the
presenceof theGoldstone, it is convenientnot to integrateout
the Goldstone phase ϕ [54], so that instead of working with
W½δμ; δsϕ� we will consider the free energy F defined as

e−βW ¼
Z

Dϕe−βF½δμ;δsϕ;ϕ�: ð9Þ

Only gradients of ϕ can appear inF, since ϕ shifts under the
symmetry. Let us now assume the symmetry is weakly
broken. This will introduce a new length scale 1=qo in the
system, the thermal correlation length of ϕ, which is para-
metrically larger than the cutoff lengthof hydrodynamics—a
hydrodynamic description of the system should exist that is
valid across this new scale. A lower-gradient, symmetry-
breaking term is allowed in F ¼ R

ddxf:

f ¼ fs
2
½ð∇ϕÞ2 þ q2oϕ2� − δsϕϕ −

χnn
2

δμ2 þ � � � ; ð10Þ

with χnn the charge susceptibility and fs the superfluid
stiffness. By integrating out ϕ and using Eq. (9), we obtain
the susceptibility matrix

χðqÞ ≃
� χnn 0

0 1
fsðq2þq2oÞ

�
: ð11Þ

Let us also review how the constitutive relations and con-
servation laws change [3,49]; see also [45]. To leading order
ingradients, themostgeneralwaytheconservationlawcanbe
weakly broken is

_nþ∇ · j ¼ −Γnþ fsq2oϕþ � � � ; ð12Þ

wherewe introduced a charge relaxation rateΓ. The last term
is fixed by the symmetry-breaking term in the free energy

(10). (We fix the sign of the Goldstone field with the
convention ½R ddxnðxÞ;ϕðx0Þ� ¼ i.) In the absence of
sources, the constitutive relation for the current and the
Josephson relation are (a different choice of hydrodynamic
framewould lead to analogous constraints; see [2] for further
details)

j ≃ fs∇ϕ −Dn∇n; _ϕ ≃ −Ωϕ −
1

χnn
nþDϕ∇2ϕ: ð13Þ

In theabsenceofexplicit symmetrybreaking, thecoefficients
of the leading terms are fixed in terms of the coefficients
appearing in the free energy (10) with qo ¼ 0, while two
transportcoefficientsDn andDϕ appearatsubleadingorder in
gradients. TheM matrix defined by Eq. (6) is given by

MðqÞ ≃
�ΓþDnq2 −fsðq2o þ q2Þ

1
χnn

ΩþDϕq2

�
ð14Þ

and is local. However, the other matrix appearing in the
hydrodynamic equation ofmotion in the presence of sources
(6),

MðqÞ · χðqÞ ≃
� χnnðΓþDnq2Þ −1

1
ΩþDϕq2

fsðq2oþq2Þ

�
; ð15Þ

is generically not—the last term has an expansion as q → 0
with higher powers of q suppressed by qo instead of the
hydrodynamic cutoff, which is parametrically larger.
Locality is restored only if the transport parameters satisfy
the relation

Ω ≃ q2oDϕ; ð16Þ

to leading order in qo. This relation was recently checked in
two holographic models [10,45].
Restoring locality through Eq. (16) implies that the order

of limits q → 0 and qo → 0 commutes in the Kubo
formulas defining Dϕ and Ω:

Dϕ ¼ fs lim
ω→0

lim
q→0

lim
Γ→0

lim
qo→0

1

ω
ImGR∂tϕ∂tϕðω; qÞ; ð17Þ

Ω
q2o

¼ fs lim
ω→0

lim
Γ→0

lim
qo→0

lim
q→0

1

ω
ImGR∂tϕ∂tϕðω; qÞ: ð18Þ

The limits Γ → 0 and qo → 0 can be taken in any order.
In Supplemental Material [2], we rederive Eq. (16) using

the Schwinger-Keldysh formalism for effective theories of
hydrodynamics [14–17]. This is advantageous as locality is
built in from the start when constructing the effective
action. There are only two independent symmetry-breaking
terms in the action, with coefficients ωo and Γ, and Eq. (16)
follows automatically.
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With Eq. (16) in hand and turning external sources δμ
and sϕ back on, we observe that the Josephson relation can
be rewritten as

_ϕ ≃ δμ −
n
χnn

þDϕ

fs
ðsϕ − hϕÞ; ð19Þ

where hϕ ≡ δf=δϕ ¼ fsq2oϕ − fs∇2ϕ is the field conju-
gate to ϕ. In static equilibrium, hhϕi ¼ sϕ. In practice,
writing out the dissipative terms in constitutive relations in
terms of the conjugate fields directly leads to local
equations of motion. In Refs. [54,55], it was emphasized
how symmetry and consistency with static equilibrium with
external sources constrains constitutive relations.
QCD.—At temperatures below the chiral phase transi-

tion, the hydrodynamics of QCD includes pions as long-
lived degrees of freedom; see, e.g., [32,33,46,56]. The
spontaneously broken SU(2) symmetry is only approxi-
mate, due to the quark masses; this case, thus, falls into the
class of systems considered in this Letter. At linear order in
fields, the Josephson relation for pions is identical to the
Abelian one studied above. Imposing that the hydrody-
namic equations of motion be local in the presence of
sources, one thus finds the relation (16) between the pion
thermal mass, diffusivity, and relaxation rate.
This relation was, in fact, noticed recently in the context

of QCD in Ref. [46], where it was shown to follow from
positivity of entropy production. This argument, however,
does not straightforwardly apply to Goldstones for Abelian
symmetries, because additional terms can be added to the
entropy current to guarantee positivity of entropy produc-
tion without imposing the relation (16). (However, as
shown in Ref. [18], coupling the fields to external sources
fixes this ambiguity, and the entropy production argument
applies.) Instead, the locality argument presented here
applies to all of these situations.
Goldstones for translation.—The free energy density for

an isotropic Wigner crystal in mechanical equilibrium in
two spatial dimensions is [13]

f ¼ B −G
2

ð∇lulÞ2 þ Gð∇ðiujÞÞ2 þ
1

2
Gq2ou2; ð20Þ

where the ui are the displacements, B and G are the bulk
and shear elastic moduli, respectively, and indices run over
the spatial dimensions. The term proportional to q2o is
assumed to be small and explicitly breaks translation
symmetry.
Momentum is relaxed:

_πi þ∇jτ
ji ¼ −Γπi − Gq2oui; ð21Þ

while the Josephson equation is

_ui ¼
πi
χππ

−Ωijuj þDk∇i∇juj þD⊥ϵij∇j∇ × u: ð22Þ

(We neglect charge and heat fluctuations. We give a more
complete analysis in Supplemental Material [2]. Both the
electric and heat currents receive new dissipative terms
when qo ≠ 0.) Locality of the M · χ matrix following from
Eqs. (20)–(22) constrains both the damping and the
diffusivities (see [2])

Dk
Bþ G

¼ D⊥
G

≡D
G
; Ωij ¼ q2oDδij; ð23Þ

as reported in holographic models of broken transla-
tions [5,38,41].
Strange metallic transport.—There is mounting exper-

imental evidence that dynamical charge fluctuations play
an important role across the phase diagram of cuprate
HTSC [57], which could play an important role in strange
metallic transport [34,38,58].
Restoring charge and heat fluctuations and assuming

approximate invariance under Galilean boosts, the resis-
tivity is (see [2])

ρdc ¼
m⋆
ne2

�
Γþ ω2

o

Ω

�
¼ m⋆

ne2

�
Γþ c2s

D

�
; ð24Þ

with n the density, e the unit charge, m⋆ the effective mass,
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G=ðm⋆nÞp

the Goldstone sound velocity, and D
defined as in Eq. (23). Equation (23) produces a finite
resistivity, which is rooted in the relaxation of the pseudo-
Goldstone in the bath of thermal excitations. We expect this
result to extend to weakly pinned electronic charge density
wave systems where the Fermi surface is fully gapped and
some electrons remain uncondensed, providing a bath of
gapless excitations and giving rise to Eq. (23). By contrast,
if the Fermi surface is fully gapped, the damping (23) will
be exponentially suppressed, recovering earlier hydrody-
namic descriptions of pinned charge density waves [29].
This result straightforwardly extends to a unidirectional

charge density wave. Since Γ is typically Oðg2Þ in the
strength g ≪ 1 of explicit breaking, while c2s=D is Oðg0Þ,
the resistivity is large in the “hard” direction of the
spontaneous modulation and small in the transverse “easy”
direction, in general agreement with transport experiments
in 2DES [59] and in HTSC [60].
Combining Eq. (24) with arguments [61] that diffusiv-

ities are bounded from below by the Planckian timescale
[62] in strongly correlated materials

D ≃
ℏ

kBT
v2 ≃

ℏ
kBT

c2s ð25Þ

(where, for simplicity, we took the characteristic velocity
v ¼ cs) leads to
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ρdc ≃
m⋆
ne2

�
Γþ kBT

ℏ

�
: ð26Þ

This gives a natural mechanism for the ubiquitous T-linear
resistivity in these materials. Moreover, the slope of the
linear term is independent from the strength of explicit
breaking, as observed in experiments where samples are
disordered by ion irradiation [63]. In contrast, Γ originates
from more conventional scattering mechanisms (umklapp
and disorder), which allows one to account for experimen-
tal reports of competing scattering mechanisms with dis-
tinct temperature dependencies [64,65].
Wigner crystals in a magnetic field.—When placed in a

magnetic field, the longitudinal and transverse hydrody-
namic modes of a 2DWigner crystal couple. The magneto-
phonon sector is described by the effective Lagrangian
[4,66]

L ≃
1

2
ωcϵ

ijφi _φj −
1

2
φi½ω2

oδ
ij − μijab∇a∇b�φj: ð27Þ

The presence of a term with a single time derivative reflects
the breaking of time reversal due to a background magnetic
field and leads to the canonical commutation relation
between the Goldstones

½φiðxÞ;φjðyÞ� ¼ −
iϵij
ωc

δðx − yÞ; ð28Þ

which are no longer independent degrees of freedom.
In the absence of pinning (ωo ¼ 0), φ has to appear with

a gradient in the potential because of invariance under
translations φi → φi þ ci. The most general stiffness tensor
consistent with isotropy and PT symmetry is
μijabqaqb ¼ Bqiqj þGq2δij, where the stiffnesses must
satisfy B;G > 0 for the potential to be positive definite.
The φi static susceptibility matrix takes the same form as in
the case without a magnetic field.
Locality enforces the following dissipative Josephson

relation:

_φi ≃ −
�
ϵij
ωc

þDφδij

�
ðδjkω2

o − μjkab∇a∇bÞφk: ð29Þ

Both the longitudinal Ω ¼ Dφω
2
o and Hall ΩH ¼ ω2

o=ωc
relaxation rates obey a relation analogous to Eq. (1) and are
completely determined by ωo and parameters of the
unpinned theory. Where applicable, our results are con-
sistent with Refs. [7–9]. The type-II nature of the
Goldstones is manifest in their dispersion relation
(qy ¼ 0) without pinning:

ω ≃�q2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðBþGÞ

ω2
c

−
B2D2

φ

4

s
−
i
2
ðBþ 2GÞDφq2x; ð30Þ

or with pinning:

ω ≃�ω2
o

ωc
− iDφω

2
o �

Bþ 2G
2ωc

q2x −
i
2
ðBþ 2GÞDφq2x: ð31Þ

Nematic phases.—Consider a phase in a translation
invariant isotropic system where rotations are spontane-
ously broken. Examples include nematic or hexatic liquid
crystals [67,68] and quantum Hall systems [69] (sponta-
neous breaking of a discrete rotation symmetry also arises
in the cuprates [70]). Spontaneous breaking of isotropy
produces a Goldstone field that shifts under rotations
θ → θ þ c. Since the generator of rotations is given by
J ¼ R

d2xϵijxiπj, where T0i ¼ πi is the momentum den-
sity, this realization of the symmetry is implemented by the
commutation relation

½πiðxÞ; θðyÞ� ¼
1

2
iϵij∂jδ

2ðx − yÞ þ � � � ; ð32Þ

where � � � denote terms that are linear in θ. The hydro-
dynamic equations are well known [13,68]. When rotation
symmetry is only approximate, θ acquires a small gap q2o as
in the examples in previous sections, which can be
measured in the susceptibility

lim
ω→0

GR
θθðω; qÞ ¼ χθθðqÞ ≃

1

fθ

1

q2 þ q2o
; ð33Þ

where fθ is the stiffness which appear in the free energy as
in Eq. (10). The Josephson relation and stress tensor
constitutive relation are

_θ ≃ −q2oDθθ þ
1

2

1

χππ
∇ × π þDθ∇2θ; ð34aÞ

τij ≃ Pδij þ
fθ
2
ϵijð∇2 − q2oÞθ þ πij ð34bÞ

with πij ¼ −Dηð∂iπj þ ∂jπi − δij∇ · πÞ −Dζ∇ · πδij. The
damping term Ω ¼ q2oDθ in Eq. (34a) follows from locality
and obeys a relation analogous to Eq. (1). The q2o term in
Eq. (34b) follows from consistency with Eq. (32).
Differently from previous examples, there is no analog
of a relaxation rate Γ for the angular momentum density:
Assuming that only rotation symmetry is broken but
translation symmetry is preserved, the stress tensor is still
conserved. One could, of course, lift this assumption and
also break translations. Since Ω ¼ q2oDθ, there is only one
parameter introduced by the weak breaking of isotropy: qo.
At the linear level, the Goldstone mixes with only the

transverse momentum density ∇ × π and the longitudinal
sector is unchanged from regular hydrodynamics; we will,
therefore, focus on the transverse sector fπ⊥; θg. Solving
the continuity relations, one finds when qo ¼ 0 that this
pair of modes disperses as
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ω� ≃ −
i
2
q2
�
Dη þDθ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDη −DθÞ2 −

fθ
χππ

s �
: ð35Þ

When ðDη −DθÞ2 ≥ fθ=χππ , these form two diffusive
modes ω ∼ −iq2, while in the opposite case ω�∼
�q2 − iq2.
When qo ≠ 0, transverse momentum diffuses:

ω− ≃ −iq2
�
Dη þ

fθ
4χππDθ

�
; ð36Þ

while the Goldstone relaxes:

ωþ ≃ −iDθq2o − iq2
�
Dθ −

fθ
4χππDθ

�
: ð37Þ

(Anti)ferromagnets.—Ferromagnets spontaneously
break SU(2) spin symmetry—which can be viewed as an
internal symmetry in the nonrelativistic limit (see [71] for a
recent formulation of relativistic spin hydrodynamics)—
down to U(1), with a finite magnetization hnai ¼ M0δ

3
a.

Antiferromagnets have the same symmetry-breaking pat-
tern, but M0 ¼ 0; their hydrodynamics is structurally
similar to that of pions discussed above, and the results
there apply with minor modifications. In this section, we
therefore focus on ferromagnets and briefly mention the
constraints obtained from locality, leaving a more detailed
study for future work.
In the absence of explicit breaking of SU(2) symmetry,

magnons disperse as [72]

ω ¼ � fs
M0

q2 − iγq4 þ � � � : ð38Þ

In practice, the SU(2) symmetry is always approximate and
broken by spin-orbit effects. This leads to several possible
explicit symmetry-breaking scenarios: For example, there
may or may not be an unbroken U(1), which may or may
not be aligned with the magnetization. For the purposes of
illustration, we focus on the situation where the entire
SU(2) is weakly explicitly broken. This will generate a
finite magnon correlation length 1=qo, allow for a relax-
ation term in the continuity relation as in Eq. (12), and
allow for new terms in constitutive relations (see [2] for
details), leading to a dispersion relation of the form

ω ¼ � fs
M0

ðq2o þ q2Þ − iðΓþDoq2 þ γq4Þ þ � � � : ð39Þ

Explicit breaking of the symmetry introduced three new
parameters: Γ, Do, and qo. However, imposing that the
hydrodynamic equations of motion be local shows that only
two are independent:

Γ ¼ q2oðDo − γq2oÞ; ð40Þ

which is the analog to Eq. (1) in this case.
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Universal Relaxation in a Holographic Metallic Density
Wave Phase, Phys. Rev. Lett. 123, 211602 (2019).

[39] A. Donos, D. Martin, C. Pantelidou, and V. Ziogas, Hydro-
dynamics of broken global symmetries in the bulk, J. High
Energy Phys. 10 (2019) 218.

[40] T. Andrade and A. Krikun, Coherent vs. incoherent trans-
port in holographic strange insulators, J. High Energy Phys.
05 (2019) 119.

[41] M. Ammon, M. Baggioli, and A. Jiménez-Alba, A unified
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