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In the context of ground states of quantum many-body systems, the locality of entanglement between
connected regions of space is directly tied to the locality of the corresponding entanglement Hamiltonian:
the latter is dominated by local, few-body terms. In this work, we introduce the negativity Hamiltonian as
the (non-Hermitian) effective Hamiltonian operator describing the logarithm of the partial transpose of a
many-body system. This allows us to address the connection between entanglement and operator locality
beyond the paradigm of bipartite pure systems. As a first step in this direction, we study the structure of the
negativity Hamiltonian for fermionic conformal field theories and a free-fermion chain: in both cases, we
show that the negativity Hamiltonian assumes a quasilocal functional form, that is captured by simple
functional relations.
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Introduction.—Over the past two decades, entanglement
has been a central concept in many branches of quantum
physics ranging from quantum information [1,2] to con-
densed matter theory [3,4] and high-energy physics [5–9].
In particular, it has been successfully utilized to character-
ize quantum many-body systems both theoretically and
experimentally [10–16]. The main object which enters in its
quantification is the reduced density matrix (RDM). For a
given state ρ, the RDM of a region A, ρA, is obtained by
tracing ρ over the complement of A, B; that is,

ρA ¼ TrBρ ¼ e−HA

ZA
; ZA ¼ Tre−HA; ð1Þ

where the operator HA is the entanglement (or modular)
Hamiltonian (EH).
From a many-body viewpoint, the entanglement proper-

ties of pure states can be construed in a hierarchical manner.
Firstly, there exists a characterization of its entanglement
properties via entanglement entropies. Those are uniquely
dependent on the spectrum of HA—also known as entan-
glement spectrum. Secondly, it is possible to characterize
the properties of the RDM directly at the operator level, via
the full characterization of the EH—a paradigmatic exam-
ple being the Li-Haldane conjecture in the context of
topological matter [17].
The EH fully characterizes the “local” properties of

entanglement in a many-body system; that is, it allows us to
understand whether the RDM can be interpreted as the
exponential of a local operator composed solely of few-
body local terms. In the context of quantum field theory,
this principle of locality is an established pillar: the
Bisognano-Wichmann (BW) theorem [18,19]. Such locality

is at the heart of several physical phenomena—from topo-
logical order to the nature of area laws in gapped systems—
and is the key element at the basis of theory and experiments
aimed at large-scale reconstructions of the RDM [20–22].
However, it is presently unknown whether it is possible to
associate locality and entanglement in a similar way for the
case ofmixed-state entanglement, that encompasses a variety
of scenarios of key experimental and theoretical relevance,
from mixed states to correlations between partitions in pure
states.
In this work, we introduce and investigate the negativity

Hamiltonian (NH), an operator that allows us to cast the
relation between locality andentanglement (in particular, that
related to Peres-Horodecki criterion) for general mixed
states. Our work is directly motivated by a series of recent
results that have emphasized the importance of the entangle-
ment negativity in a variety of settings, including harmonic
oscillator chains [23–29], quantum spinmodels [30–38], free
fermionic systems [39–44], ð1þ 1ÞD conformal and inte-
grable field theories [45–55], out-of-equilibrium settings
[56–64], and topological order [65–70]. Importantly, the
negativity is directly linked to the partial transpose ρT1

A of the
RDM, and, as such, does lend itself naturally to an inter-
pretation based on statistical mechanics. For the case of a
subpartition of A ¼ A1 ∪ A2, we define the negativity
Hamiltonian N A as

ρT1

A ¼ Z−1
A e−N A : ð2Þ

Clearly N A is non-Hermitian because negative eigenvalues
of ρT1

A are the signature of mixed-state entanglement.
Nevertheless, it is still natural to wonder about the locality
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properties ofN A and about the location of its eigenvalues in
the complex plane.
After discussing the definition of N A for both bosonic

(spin) and fermionic systems, we unveil the operator
structure of N A for two relevant cases: ð1þ 1Þd fermionic
conformal field theory and a tight-binding model of
spinless fermions on a chain.Both cases showa characteristic
quasilocal (in a sense to be specified below) structure—a
first demonstration of the relation between entanglement
and locality at the operator level beyond the case of
complementary partitions. On top of its conceptual rel-
evance, and similarly to what has been discussed in the
context of pure states for the case of local EHs, this fact
enables some immediate consequences: (i) interpreting
the negativity spectrum, i.e., the analog of the pure-state
entanglement spectrum for mixed states [38,50], (ii) simulat-
ing this object in nowadays available quantum platforms
[10], and (iii) applyingwell-established statistical mechanics
tools such as tensor networks [71,72] and quantum
Monte Carlo techniques [73] to access the entire partial
transpose ρT1

A .
Partial transpose.—To introduce the concept of the

negativity Hamiltonian, the first step is to discuss the
partial transpose for bosonic and fermionic systems. Let us
start by considering a bosonic system A ¼ A1 ∪ A2

described by

ρA ¼
X
i;j;k;l

heA1

i ; eA2

j jρAjeA1

k ; eA2

l ijeA1

i ; eA2

j iheA1

k ; eA2

l j; ð3Þ

where jeA1

i i; jeA2

j i denote orthonormal bases in the Hilbert
spaces HA1

and HA2
corresponding to subsystems A1 and

A2. The partial transpose of the reduced density matrix ρT1

A
with respect to the system A1 is defined performing a
standard transposition in HA1

, i.e., exchanging the matrix

elements in A1, ρT1

A ¼ ðTA1
⊗ 1A2

ÞρA. The presence of

negative eigenvalues of ρT1

A is a signature of mixed-state
entanglement [74], which can be quantified by the loga-
rithmic negativity E ¼ log TrjρT1

A j [75,76].
The partial transposition also has an interpretation in terms

of a time-reversal transformation ormirror reflection in phase
space [77]. Namely, considering the one-to-one correspon-
dence between density matrices and Wigner distribution
functionsWðq; pÞ, then ρA → ρTA ⇔ Wðq; pÞ → Wðq;−pÞ.
This can be conveniently observed starting from a bosonic
density matrix written in a coherent state basis, since time-
reversal transformation (T ) can be identified with the
complex conjugation [39]. Taking jαi, a bosonic coherent
state, one has

ðjαihα�jÞ!T jα�ihαj ¼ ðjαihα�jÞT: ð4Þ

In the case of fermionic systems, the equivalence above
does not hold and the definition of partial transposition

differs when looking at the density matrix or at the Wigner
distribution function. In a coherent state basis the RDM
reads [39,44,78,79]

ρA¼
1

Z

Z
d½ξ�d½ξ̄�e−

P
j
ξ̄jξjhfξjgjρAjfξ̄jgijfξjgihfξ̄jgj: ð5Þ

Here ξ; ξ̄ are Grassman variables and jξi ¼ e−ξa
† j0i,

jξ̄i ¼ h0je−a† ξ̄ are the related fermionic coherent states.
The partial time reversal, analog of Eq. (4), is [39]

jξihξ̄j!T jiξ̄ihiξj: ð6Þ

The partial time reversal ρR1

A , obtained by acting with
Eq. (6) in Eq. (5) only in A1, provides the fermionic
negativity as E ¼ log TrjρR1

A j, although its spectrum is not
real in general [40]. To have a more transparent interpre-
tation of the fermionic negativity, an alternative partial
transpose, called twisted fermionic partial transpose, has
been defined as [40]

ρR̃1

A ¼ ρR1

A ð−1ÞFA1 ; ð7Þ

where FA1
¼ P

j∈A1
nj is the number of fermions in the

subsystem A1. This new object has only real eigenvalues
and the logarithmic negativity,

E ¼ log TrjρR̃1

A j; ð8Þ

is a measure of the negativeness of the eigenvalues, exactly
as for the bosonic partial transpose. We define the neg-
ativity Hamiltonian related to ρR1

A asN A and the one related

to ρR̃1

A as Ñ A.
Bisognano-Wichmann theorem.—The BW theorem

gives a general structure for the entanglement
Hamiltonian of the ground state of a relativistic invariant
quantum field theory with Hamiltonian densityHðxÞ, when
considering a bipartition between two half-spaces of an
infinite system. In formulas, considering a d-dimensional
system, x ¼ fx1;…; xdg and a partition A ¼ fxjx1 > 0g,
the EH of the ground state isHA ¼ 2π

R
x∈A dxx1HðxÞ þ c,

where c is a normalization constant. This result does not
depend on the dimensionality of the system or on any
a priori knowledge of the ground state and can be applied
to a large variety of systems and quantum phases. For
conformal invariant theories, the BW theorem is easily
generalized to some different geometries by conformal
mappings [80–83]. This equivalence does not hold when A
is the union of two disjoint intervals, but, nevertheless, the
EH for this geometry is known for (1þ 1)-dimensional free
Dirac fermions [84]. In this case, it is possible to identify a
local part in the entanglement Hamiltonian proportional to
the energy density and a quasilocal part quadratic in the
fermionic field. We will make explicit use of this example
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in the following. We will also check our analytical
prediction against lattice simulations. In fact, the BW
theorem can be used to construct approximate entangle-
ment Hamiltonians for lattice models. This has been
extensively investigated both for one- and two-dimensional
models and it has been shown that the approximation
provided by BW theorem allows us to build entanglement
Hamiltonians that encode all the relevant entanglement
properties of the ground states [85–87].
Negativity Hamiltonian and its quasilocal structure.—

To build the negativity Hamiltonian, we should first recall
the path integral construction of the (bosonic) partial
transpose [46,47]. The partial transposition corresponds
to the exchange of row and column indices in A1 which
naturally leads to a space inversion within A1. On a
fundamental level, this fact can be deduced from CPT
theorem. Indeed, the partial transposition is equivalent to a
partial time reversal that, by CPT, is the same as a parity
operation in the world sheet combined with a charge
conjugation. This second construction holds true also for
ρR1

A in fermionic systems.
Therefore, starting from the entanglement Hamiltonian

for two disjoint intervals and doing a spatial inversion of the
interval A1 ¼ ½a1; b1�, one obtains the partial time reversal
of the density matrix. Although this procedure is fully
general, the entanglement Hamiltonians of disjoint inter-
vals are known only in few cases [84,88–94]. In particular,
starting from the EH for the massless real (Majorana)

fermion ΨðxÞ [84], ΨðxÞ ¼
�ψ1ðxÞ
ψ2ðxÞ

�
, and performing this

inversion, we get after simple algebra [95]:

N A ¼ N A;loc þ iN A;qloc;

N A;loc ¼ 2π

Z
A
βRlocðxÞTttð0; xÞdx;

N A;qloc ¼ 2π

Z
A
βRqlocðxÞTqloc(x; x̄RðxÞ)dx; ð9Þ

where

βRlocðxÞ ¼
1

wR0 ðxÞ ; βRq−locðxÞ ¼
βRloc(x̄

RðxÞ)
x − x̄RðxÞ ; ð10Þ

with

wRðxÞ¼ log

�
−
ðx−b1Þðx−a2Þ
ðx−a1Þðx−b2Þ

�
;

x̄RðxÞ¼ ða1b2−b1a2Þxþða1þb2Þb1a2− ðb1þa2Þa1b2
ða1−b1þb2−a2Þxþb1a2−a1b2

:

ð11Þ
Here Tttð0; xÞ is the energy density operator of the theory
while Tqlocðx; x̄Þ is a bilinear of the real fermionic fields,
with x ∈ A1 and x̄ ∈ A2 (and vice versa); i.e.,

Tqlocðx; yÞ≡ i∶(ψ1ðxÞψ1ðyÞ − ψ2ðxÞψ2ðyÞ)∶: ð12Þ

The structure of Eq. (9) is very suggestive: it consists of a
local term proportional to the energy density and an
additional nonlocal part given by a quadratic expression
in the fermionic field. The latter, however, has a mild
nonlocality: each point x ∈ A1 is coupled to only a specific
y ¼ x̄R ∈ A2 (that is a consequence of the mirror symmetry
for equal intervals). Thus, following Ref. [84], we refer to
N A;qloc as a quasilocal operator. Its existence is the reason
for the imaginary components in the spectrum of N A,
which is one characteristic treat of ρR1

A . The shape of
jN A;qlocj (see also Fig. 1) is compatible with the results of
the negativity contour [42] suggesting that the largest
contribution to the negativity comes from the boundary
region between A1 and A2.
To test the validity of Eq. (9), we consider a lattice

discretization of the Hamiltonian of free real fermions.
Because of the Gaussianity of ρR1

A [39], the numerical
evaluation of the negativity Hamiltonian amounts to
compute the single particle operator NA defined as

FIG. 1. Benchmark of the analytical prediction for the neg-
ativity Hamiltonian of a real fermion. We consider A1 ¼
½1;l�; A2 ¼ ½lþ 1; 2l� embedded in the infinite line. The sym-
bols correspond to numerical data, while the solid lines corre-
spond to the discretized form of Eq. (9). Upper panel: NA;loc.
Lower panel: jNA;qlocj. Insets: data collapse
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N A ¼ P
ijðNAÞi;jψ jψ i, related to the covariance matrix

[101,102]. We focus on two equal adjacent intervals
A ¼ A1 ∪ A2 made up of l sites labeled by 1 ≤ j ≤ 2l.
In this case, the point x̄R in Eq. (11) is just x̄R ¼ 2l − x and
so the quasilocal term lies entirely on the antidiagonal. As a
consequence, in Fig. 1 we show only the subdiagonal
ðNAÞj;jþ1 [a similar behavior can be found for ðNAÞjþ1;j]
and the antidiagonal ðNAÞj;2l−j which correspond, respec-
tively, to the local and to the quasilocal parts of NA. The
agreement between lattice exact and field-theoretical dis-
cretized NA is remarkable over the all parameter regime,
and even for modest system sizes. Small discrepancies up
to a few percent are present far from the boundaries: those
have very little effect on the negativity, as they affect only
very small (in absolute value) eigenvalues of the partial
transpose. We verified that the other matrix elements of NA
are negligible, in the sense that they are subleading as
l → ∞ (in the same sense as subleading terms in the EH
are negligible; see Refs. [85–87,103–107]).
We have also studied the structure of negativity

Hamiltonian Ñ A for two adjacent intervals of equal length,

l1 ¼ l2 ¼ l. We remind that ρR̃1

A ¼ Z−1
A e−Ñ , where ρR̃1

A is
defined in Eq. (7). The advantage in the analysis of this
operator is that it is Hermitian, so the logarithmic negativity
recovers its original meaning of measure of the negative-
ness of the eigenvalues, as we are going to show by
discussing the spectrum of this operator. Although we did
not manage to derive its form explicitly, we provide a
conjecture that very accurately matches numerical data on
the lattice. It reads Ñ A ¼ Ñ A;diag þ Ñ A;loc þ Ñ A;qloc, with

Ñ A;diag ¼ 2πi
Z
A
β̃diagðxÞdx;

Ñ A;loc ¼ 2π

Z
A
β̃locðxÞdxTttð0; xÞ;

Ñ A;qloc ¼ 2π

Z
A
β̃q−locðxÞTqlocðx; x̄RÞdx; ð13Þ

where

β̃diagðxÞ¼
1

2
−

x
8l

;

β̃loc ¼−
xð8l2−6lxþx2Þ

8l2
;

β̃qlocðxÞ¼ 4

�
x−2l− 1

2

4l

�
4

þ1

2

�
x−2l− 1

2

4l

�
2

−
1

2
: ð14Þ

Let us observe that by choosing a1 ¼ 0; b1 ¼
a2 ¼ l; b2 ¼ 2l, Ñ A;loc and N A;loc coincide, while

Ñ A;nonloc and N A;nonloc are different because the former
is a quartic function of x, while the latter is quadratic. As a
nontrivial test for the accuracy of this conjecture, we verified
that it provides a logarithmic negativity that, as l increases,
approaches the exact numerical value (see Fig. 2). We also
benchmarked the analytical predictions fromEq. (13) for free
real fermions on the lattice, as shown in Fig. 3, for the one-
particle NH, i.e., Ñ A ¼ P

ijðÑAÞi;jψ jψ i. Remarkably, the
formulas above are in good agreement with simulations and,
as already observed, the small discrepancies do not affect
sizably the logarithmic negativity approximation. The inset

FIG. 2. Summary of our results for adjacent intervals of equal
length l on the infinite line for lattice free-fermions (geometry in
the inset). The one-particle negativity Hamiltonians NA and ÑA
are dominated by quasilocal terms appearing close to the diagonal
and on the antidiagonal (see the right-hand panels for l ¼ 8).
Left-hand panel: comparison of the exact logarithmic negativity
with the approximate one coming from field theoretical ÑA;
see text.

FIG. 3. Benchmark of the analytic prediction for the negativity Hamiltonian ÑA. The symbols correspond to numerical data, while the
solid lines correspond to the discretized form of Eq. (13) for two adjacent intervals of length l. From left to right: comparison ÑA;loc,
ÑA;qloc−loc, and ÑA;qloc with exact lattice simulations. Insets: data collapse
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illustrates how results from different partition sizes collapse
onto a single functional form, signaling scale invariance.
A final comment concerns the spectrum of ÑA: it consists

of two parts, fλj þ iπg; λj ∈ R for j ¼ 1;…; 2l and
fλjg; λj ∈ R for j ¼ 2lþ 1;…; 4l. By simple exponen-

tiation, we get the eigenvalues of ρR̃1

A ; see Supplemental
Material [95]. We can then trace back the appearance of

negative eigenvalues in the spectrum of ρR̃1

A (and, as a
consequence, of a nonzero negativity) to the presence of the
factors iπ in ÑA.
Other tests of the analytic formulas for the negativity

Hamiltonian NA, including different and disjoint intervals,
are reported in the Supplemental Material [95].
Discussion and outlook.—In this work we initiated the

study of the negativity Hamiltonian in many-body quantum
systems. Although our field-theoretical construction in
terms of the EH of disjoint intervals is very general, its
applicability relies crucially on the exact knowledge of the
latter, that is not always available. We hope that this work
will spark further studies on disjoint intervals’s EH and, at
the same time, the search for alternative constructions of
NA. Furthermore, we stress that the knowledge of this
operator encodes the entire information content about the
entanglement in the mixed states. This is remarkable with
respect to the scalar quantities used to compute the
entanglement (e.g., the negativity), which do not allow
us to reconstruct the whole partial transpose reduced
density matrix. We expect that the quasilocal structure of
the negativity Hamiltonian can be generalized to other
contexts, at least for free-fermions, such as a single interval
in an infinite system at finite temperature [83], or two
disjoint intervals in the presence of a pointlike defect [91].
At present, it is unclear whether this quasilocal structure
survives to finite interaction strengths and in higher
dimensions.
Having established an explicit approximate functional

form for the negativity Hamiltonian that is quasilocal opens
up several possible applications. First, one could design
experiments aimed at a direct realization of NA: since the
corresponding operators have simple functional form, this
could be done by combining local tuning with tailor-
engineered long-distance couplings similarly to what has
already been proposed in the context of quantum chemistry
simulations [108]. Second, the local structure of NA paves
the way for a direct reconstruction of partial transposes in
experiments, utilizing, e.g., Hamiltonian reconstruction
methods that have already been combined with the BW
theorem [21]. Both of these applications would allow a
direct measurement of the negativity spectrum, something
that is presently unachievable by any method other than full
state tomography. Third, it may be possible to design
efficient classical or hybrid classical-quantum algorithms
for the ab initio determination of NA, similarly to what has
been done for the EH following a BW inspired ansatz

[20,22,109]. Having an explicit functional form could
enable computations that are then not available other-
wise—one example being quantum Monte Carlo algo-
rithms aimed at computing the negativity utilizing
metadynamics, similarly to what has been done in the
context of the EH [110].
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