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Figuring out the physical rationale behind natural selection of quantum theory is one of the most
acclaimed quests in quantum foundational research. This pursuit has inspired several axiomatic initiatives
to derive a mathematical formulation of the theory by identifying the general structure of state and effect
space of individual systems as well as specifying their composition rules. This generic framework can allow
several consistent composition rules for a multipartite system even when state and effect cones of individual
subsystems are assumed to be quantum. Nevertheless, for any bipartite system, none of these compositions
allows beyond quantum spacelike correlations. In this Letter, we show that such bipartite compositions can
admit stronger-than-quantum correlations in the timelike domain and, hence, indicates pragmatically
distinct roles carried out by state and effect cones. We discuss consequences of such correlations in a
communication task, which accordingly opens up a possibility of testing the actual composition between
elementary quanta.
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Introduction.—The idea of composition plays a crucial
role in fabricating our world view and accordingly guides
us while constructing theories for the physical world [1].
For instance, the objects we encounter in our daily life—
household items, machines, communication devices, com-
puters, etc.—can be thought of as being composed of more
elementary parts, whereas Penrose tribar describes an
interesting composite object yet impossible to exist [2].
On the other hand, a region of spacetime with fields on it
can be thought of as being composed of many smaller
regions joined at their boundaries [3]. Quantum formalism
also assumes a particular composition rule while describing
systems consisting of more than one subsystem [4–8].
Considering the individual systems to be quantum, one can
construct several mathematically consistent models to
describe state and effect spaces of a multipartite system,
where consistency demands the outcome probability
obtained from any pair of valid state and effect to be a
positive number between zero and one. Constraints arising
from physical and/or information theoretic demand may
further abridge the scope of possible compositions. For
instance, the state space of a bipartite system satisfying no
signaling principle and tomographic locality postulate lies
within two extremes—minimal tensor product andmaximal
tensor product [9–12]. The corresponding effect spaces are
specified in accordance with the “no-restriction” hypothesis
[13], which demands any mathematically well-defined
measurement to be physically allowed. For brevity, the
resulting theories arising from these two compositions will
be denoted by SEP and SEP, respectively. In between these

two extremes, many other compositions can be introduced,
among which quantum (Q) composition is one example.
Naturally, the question arises whether there exist input-

output correlations that are specific to some particular
composite structure. An interesting answer stems from the
Bell nonlocal correlations [14–17] that are unavailable in
SEP theory, whereas all other compositions contain such
nonlocal correlations. On the other hand, a no-go result can
be argued from the work of Barnum et al. [18]—any
bipartite spacelike correlation obtained in SEP is also
achievable in Q. In fact, any composite model of two
quantum systems satisfying the no-signaling principle
cannot have a beyond quantum spacelike separated corre-
lation within its description. It might be tempting to
presume that any input-output correlation obtained in
SEP should also be achievable in Q, since the roles of
state and effect cones in SEP and SEP theories just get
interchanged (see Fig. 1). In this Letter, we show that this
naive intuition is, in fact, not correct. There, indeed, exist
timelike correlations in SEP that cannot be obtained in Q
composition. In fact, such correlations, with different
strengths, might exist in different composite models indi-
cating empirical distinction among these compositions. In
other words, mathematically consistent bipartite composi-
tion of elementary systems can have beyond quantum
timelike correlations even when the elementary systems
allow a quantum description. We establish the above thesis
through a communication task (game) involving two
parties. We first analyze the optimal qubit communication
required to accomplish the task when quantum composition
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is assumed. In fact, a necessary and sufficient condition for
perfect accomplishment of the task is derived in the
generalized probabilistic theory (GPT) framework. We
then show that for perfect success of the game the required
number of qubits to be communicated is strictly less than
quantum if SEP composition is considered. Thus, SEP
composition makes certain communication complexity
problems trivial in comparison to quantum composition.
It is worth mentioning that, starting with an information-
theoretic axiom “communication complexity is nontrivial,”
researchers have identified “unphysical” consequences of
beyond quantum spacelike correlations [19–24] (see [25]
for a review on communication complexity). Our study
establishes that the same axiom can be efficiently utilized to
isolate beyond quantum correlations in the timelike
domain. Our proposed communication task provides an
empirically testable criterion toward natural selection of the
bipartite composite structure among different possible
compositions lying in between SEP and SEP.
Preliminaries.—First, we briefly recall the framework of

GPT, since some of our results will be proved in this
generalized framework. Although the framework had
originated much earlier [26–28], the advent of quantum
information theory brought renewed interest in this frame-
work [13,29–32]. For an overview of this framework, we
also refer to Refs. [33–37]. A GPT is specified by a list of
system types and the composition rules specifying a
combination of several systems. In the prepare and measure
scenario, a system (S) is described by the tuple ðΩ; EÞ.
Here, Ω represents the collection of normalized states,
generally a compact-convex set embedded in some positive
cone Vþ (collection of unnormalized states) of some real
vector space V. On the other hand, E denotes the collection

of effects, where an effect e ∈ E corresponds to a linear
functional e∶Ω ↦ ½0; 1�, with eðωÞ denoting the success
probability of filtering the effect e on the state ω ∈ Ω
when some measurement M≔ feijei ∈ E ∀ i;

P
i ei ¼ u;

and uðωÞ ¼ 1 ∀ ω∈Ωg is performed. The unnormalized
effects form a cone V⋆þ which is dual to the state cone Vþ.
For instance, the state cone of a quantum system associated
with Hilbert space H consists of the set of positive
operators T þðHÞ ⊂ T ðHÞ acting on H, where T ðHÞ
denotes the set of all Hermitian operators on H. A
normalized state ρ is an element of T þðHÞ with trace
one, and their collection is the convex-compact set of
density operators DðHÞ. A generic quantum measurement
corresponds to positive operator valued measure M ≔
fπijπi ∈ T þðHÞ;Pi πi ¼ 1Hg, with 1H being the identity
operator on H.
A set of states fωig ⊂ Ω are called perfectly distinguish-

able if there exists a measurement M ≡ feij
P

i ei ¼ ug
such that eiðωjÞ ¼ δij. Given a system S ≡ ðΩ; EÞ, the
maximal cardinality of the set of states that can be perfectly
distinguished is known as the operational dimension of the
system. On the other hand, the maximal cardinality of the
set of states that can be perfectly distinguished pairwise is
known as the information dimension of the system [38].
Note that, in the case of operational dimension, only one
measurement is allowed to distinguished the states,
whereas for information dimension different measurements
for distinguishing different pairs are allowed.
Given two systems SA ≡ ðΩA; EAÞ and SB ≡ ðΩB; EBÞ,

the state space of the composite system SAB ≡ ðΩAB; EABÞ
is embedded in the tensor product space VA ⊗ VB,
although the choice of ΩAB is not unique. However, the
no-signaling principle and tomographic locality [9] postu-
late narrow down the choices within two extremes—the
minimal tensor product space and maximal tensor product
space, resulting in theories we will call SEP and SEP,
respectively. For two systems, each described by quantum
theory individually, the state cone in SEP theory is given by

ðVSEP
AB Þþ ≔

�X

i

πAi ⊗ πBi j∀ i; πAi ∈ T þðHAÞ;

and πBi ∈ T þðHBÞ
�

:

The effect cone ESEP
AB is dual to ΩSEP

AB and is given by

ðVSEP
AB Þ⋆þ≔fY ∈T ðHA⊗HBÞjTrðXYÞ≥0 ∀ X∈ ðVSEP

AB Þþg:

SEP theory allows only separable states, whereas the state
cone ðVQ

ABÞþ ≔ fY ∈ T þð ⊗ HBÞg of quantum theory
contains both product and entangled states. On the other
hand, effects in SEP theory can be more exotic than
quantum entangled effects. For instance, entanglement
witnesses [39] can be a valid effect in this theory, as they

FIG. 1. Intuitive representation of the state and effect cones for
different compositions of two individual quantum systems.
(a) SEP theory: Only separable states are allowed, whereas
effects are more exotic than the effects allowed in quantum
theory. (b) Quantum theory: The state cone and effect cone
exactly overlap (self-dual). (c) SEP theory: The effect cone is
constrained in comparison to quantum theory but allows states
that are more exotic than quantum states. The state cone of SEPþ
δNP lies strictly in between SEP and Q, whereas for SEP − ξNP

theory it lies strictly in between Q and SEP. Examples of such
compositions are shown in (a) and (b) with light shaded cones.
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yield positive probability on any separable state. Thus, we
have the following set inclusion relations:

ðVSEP
AB Þþ ⊂ ðVQ

ABÞþ ¼ ðVQ
ABÞ⋆þ ⊂ ðVSEP

AB Þ⋆þ:

Equality between ðVQ
ABÞþ and ðVQ

ABÞ⋆þ for quantum
composition is known as self-duality, which also holds
true for a class of elementary GPT models [40–42]. The
SEP theory is obtained by interchanging the role of state
cone and effect cone of SEP theory (see Fig. 1) and, hence,
allows more exotic states than quantum states, e.g., the
positive on pure tensors states [43]. In between SEP and
SEP, one can consider many other compositions, either by
adding a subset of nonseparable states δNP with the state
cone of SEP or by excluding a subset of nonseparable states
ξNP from the state cone of SEP. The resulting theories we
will denote as SEPþ δNP and SEP − ξNP. Excluding SEP,
many of these theories are at par with quantum theory in the
sense of containing nonlocal correlations. The result of
Ref. [18] implies that one cannot obtain any spacelike
correlation in any of these models that is not available in
quantum theory. More precisely, any input-output spacelike
correlation obtained in any of the above compositions
between two qudits is, indeed, achievable in Cd ⊗Q Cd. In
the following, we will show that such a thesis is not true
anymore if we consider correlations in the timelike domain.
Formally, spacelike correlations represent joint input-
output conditional probability distributions arising from
local measurements performed on spatially separated
composite systems where no communication is allowed
between the subsystems. On the other hand, the timelike
scenario allows communication from one subsystem to the
other (see Fig. 2). While the study of Bell nonlocality has

motivated a vast literature in the former scenario [17], the
latter avenue has been comparatively less explored. In
the following, we introduce a game that helps to grasp the
strength of correlations in the timelike domain.
Pairwise distinguishability game P½n�

D .—The game
involves two players (say) Alice and Bob and a referee.
In each run of the game, the referee provides a classical
message η to Alice, randomly chosen from some set of
messages N , where jN j ≔ n, and asks Bob a question
Qðη; η0Þ—whether the message given to Alice in that run is
η ∈ N or η0 ∈ N , where η0 ≠ η. Since η0 ≠ η, ðn

2
Þ number of

such different questions are possible. The winning con-
dition of the game demands Bob answer all the questions
correctly. Alice and Bob do not share any correlated state,
but Alice can encode her message on the states of some
physical system and accordingly send them to Bob. The
following results provide a necessary and sufficient con-
dition for winning the game in any GPT.
Proposition 1.—Perfectwinning of the gameP½n�

D requires
Alice to encode her message η ∈ N on a set of states
fωηgη∈N ⊂ Ω of some system S ≡ ðΩ; EÞ such that the
states within the set fωηgη∈N are pairwise distinguishable.
Formal proof of the proposition we defer to

Supplemental Material [44]. Here, we point out that the
concept of information dimension of the system used by
Alice to encode her messages plays a crucial role in this
game, since, in each run, the questionQðη; η0Þ asked to Bob
will be a function of two messages, one of which has been
provided to Alice.
We will now consider the situation where Alice encodes

her messages on the states of multiple qubits available to
her. However, depending upon the composite structures
assumed to model these multiple qubits, different numbers
of qubits may be required to win the same game, which
leads us to one of our core results.
Theorem 1.—Four-qubit communication from Alice to

Bob is required for winning the game P½12�
D when quantum

composition is considered among the elementary systems,
whereas two SEP bits (i.e., two qubits in SEP composition)
suffice for winning this game.
Proof (outline).—For a quantum system, the information

dimension is the same as its operational dimension, which
is again the same as the dimension of the associated Hilbert
space [38]. Since the Hilbert space dimension of ðC2Þ⊗3 is
8, according to Proposition 1, three-qubit communication

is not sufficient for winning the game P½12�
D perfectly.

However, four-qubit communication suffices as the number
of distinguishable (as well as pairwise distinguishable)
states, in this case, is 16. If we consider the SEP
composition between two qubits, then the following 12
states A ≔ fjκκi; κκ̄i; jκ̄κi; jκ̄ κ̄igκ∈fx;y;zg turn out to be
pairwise distinguishable, where jαβi ≔ jαi ⊗ jβi and
jκiðjκ̄iÞ is the eigenstate of Pauli operator σκ with eigen-
value þ1ð−1Þ, where κ ∈ fx; y; zg. While some pairs of

FIG. 2. Timelike and spacelike correlations. (a) The preparation
(blue) and measurement (green) devices receive inputs x and y,
respectively, and finally an outcome a is obtained. The blue
device prepares two elementary systems which are individually
described as quantum bits, but the global description of the
preparation is unknown. This setting can generate stronger-than-
quantum correlation as shown in Theorem 1. In (b), correlations
generated by spacelike separated measurement devices acting on
two qubits always imply a quantum description of the joint
preparation [18].
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states, such as fjxxi; jxx̄ig, are perfectly distinguishable in
quantum theory due to mutual orthogonality, some pairs,
such as fjxxi; jzzig, consisting of nonorthogonal states
cannot be perfectly distinguished in quantum theory.
However, as shown by Arai, Yoshida, and Hayashi, such
states can be perfectly distinguished in SEP theory [51].
Complete analysis (along with the measurement) of pair-
wise distinguishability of the states A in SEP theory is

presented in Supplemental Material [44]. The game P½12�
D ,

thus, can be perfectly won in SEP theory if Alice encodes
her message on these states. This completes the proof of
our claim. ▪
Theorem 1 establishes the communication advantage of

SEP composition over the other two compositions Q and
SEP, even though it is a local theory by construction. This
theorem also implies a curious feature of the SEP theory,
known as “dimension mismatch”—the difference between
measurement dimension and information dimension [38].
Corollary 1.—SEP composition exhibits the phenome-

non of dimension mismatch.
Proof.—The measurement dimension of two SEP bits is

4, which follows from Proposition 2.5 of Ref. [51], whereas
our Theorem 1 establishes its information dimension to be
strictly greater than 4 and completes the proof. ▪
Dimension mismatch and consequently the presence of

stronger-than-quantum timelike correlation in the above
result arises strictly from the choice of composition. One
might ask whether the advantage of two qubits in SEP
composition for playing the P½n�

D game can be made
arbitrarily large. Our next result is a no-go answer to this
question (proof provided in Supplemental Material [44]).
Lemma 1.—The game P½n�

D cannot be won perfectly by
communicating the encoded states chosen from the
composite system C2 ⊗min C2 whenever n > 12.
However, the advantage of SEP composition over

quantum theory can be increased if we start with a larger
number of SEP bits initially.
Theorem 2.—2k number of SEP bits are sufficient for

winning the game P½12k�
D perfectly, whereas it requires 2kþ

⌈k log2 3⌉ number of qubits, with k ∈ Zþ.
Proof is provided in Supplemental Material [44]. While

deriving this theorem, we use the fact that Bob addresses at
most two SEP bits together while decoding Alice’s mes-
sage. The gap between the number of SEP bits and qubits
might increase further if Bob addresses all the SEP bits
together. However, we leave this question open for future
research. We rather move to a possible experimental
implication of our study.
Novel experimental proposals bring adequate physical

reasoning to the ‘mathematical fiction’: of Hilbert space
formulation of quantum theory. For instance, the exper-
imentally observed algebraic relationship among the coher-
ent cross sections of scattering amplitudes in a triple-slit
experiment constitutes a test for complex versus quaternion
quantum theory [52]. The experiment by Sinha et al. that

rules out multiorder interference in quantum mechanics is
worth mentioning at this point [53]. In a similar spirit, a
pertinent question to ask is which particular composite
structure between two elementary qubits must be preferred
[54,55]. At this point, one might wish to postulate a
particular composite structure. Schrödinger, for instance,
found quantum composition “rather discomforting” [56]
due to the peculiarity of quantum entanglement as dem-
onstrated in the Einstein-Podolsky-Rosen gedanken experi-
ment [57]. The SEP composition, which does not contain
these “discomforting” features, is immediately ruled out
due to the seminal experiment by Aspect and collaborators
[58] and the recent loophole-free Bell tests [59–61] which
validate the presence of nonlocal correlations in nature.
There are still a number of different bipartite compositions,
such as SEPþ δEP, SEP − ξEP, and SEP, that, like the
quantum composition Q, incorporate nonlocal correlations
and, hence, cannot be excluded from the Bell test’s results.
Furthermore, no such model can contain any spacelike
correlation which is not available in quantum theory [18].

At this point, our P½12�
D game starts playing a crucial role.

Perfect success of this game with communication of less
than four qubits assures the presence of beyond quantum
timelike correlation which indicates a departure from the
composition rule adopted in quantum theory. In fact, our
next result proposes a generic test in this direction.
Proposition 2.—For n > 2k, the game P½n�

D cannot be
won with k qubits communication from Alice to Bob if the
composition rule is quantum.
The proof simply follows from Proposition 1 and the fact

that the information dimension of a quantum system is the
same as its Hilbert space dimension. A non-null result in
Proposition 2, i.e., successful completion of the task P½>2k�

D
with k qubits communication, will indicate a departure
from the quantum composition rule, whereas null result
builds confidence toward quantum composition.
Discussions.—The present Letter initiates a novel para-

digm toward experimental tests for derivation of the
composition rule from quantum mechanics. Importantly,
unlike the seminal Bell tests that deal with spacelike
correlations, our proposal is based on timelike correlations.
In this regard, the recent works in Refs. [62,63] are worth
mentioning. In particular, the authors in Ref. [62] provide
examples of stronger-than-quantum timelike correlations
while considering two elementary systems. However, the
elementary systems considered there are postquantum in
nature (particularly the square bits), which itself can
generate stronger timelike correlation than a qubit as
established through our P½n�

D task. The possibility of
stronger-than-quantum timelike correlations in this present
work, therefore, emerges strictly from the choices of
composition between the qubits. From a technical point
of view, the authors in Ref. [62] utilize a concept called
“signaling dimension” which is motivated from the study
made in Ref. [64], whereas, in our case, the concept of
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information dimension plays a crucial role. On the other
hand, the approach in Ref. [63] involves calculating
entropic quantities, which requires particular structure in
a theory to be well defined [65,66]. Our approach, however,
involves a very intuitive notion of pairwise distinguish-
ability. A more elaborate discussion regarding novelty of
our method in comparison to the existing approaches is
deferred to Supplemental Material [44].
Our study also motivates a number of questions that

might be interesting for further exploration. First of all,
dimension mismatch studied in Ref. [38] for a square bit
model suggests several exotic implications. For instance, it
can result in collapse of communication complexity and
can also empower the Maxwell’s demon, indicating a
violation of the second law of thermodynamics. Similar
studies will be interesting in our case as our Corollary 1
implies a dimension mismatch arising strictly from a
compositional aspect of local quantum systems. It will
also be interesting from a complexity theory perspective to
answer the question mentioned after Theorem 2. Finding
the implications of different composition rules is worth
exploring for higher-dimensional elementary quantum
systems. Similar questions might also be reframed in field
theoretic formalism [67,68]. On the other hand, studying
the implication of such stronger timelike correlations
within the framework of generalized probabilistic theory
might also provide fundamentally new insights regarding
the structure of spacetime. The toy models of polygonal
theory that have been studied extensively in the recent past
[40–42,69–71] might be a starting point toward this
endeavor.
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