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We investigate the early coarsening dynamics of an atomic Bose gas quenched into a superfluid phase.
Using a two-step quench protocol, we independently control the two cooling rates during and after passing
through the critical region, respectively, and measure the number of quantum vortices spontaneously
created in the system. The latter cooling rate regulates the temperature during the condensate growth,
consequently controlling the early coarsening dynamics in the defect formation. We find that the defect
number shows a scaling behavior with the latter cooling rate regardless of the initial cooling rate, indicating
universal coarsening dynamics in the early stage of condensate growth. Our results demonstrate that early
coarsening not only reduces the defect density, but also affects its scaling with the quench rate, which is
beyond the Kibble-Zurek mechanism.
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When a system crosses a symmetry-breaking phase
transition, topological defects can be spontaneously cre-
ated. This defect formation originates from the causal
independence of distant regions and is a generic process
in nonequilibrium phase transition dynamics, which gives
it broad relevance in condensed matter physics as well
as cosmology [1–4]. A practically important problem is
the quantitative estimation of the created defect density.
However, this is a challenging problem that requires a full
description of the complex phase transition dynamics,
including the emergence and coarsening of the order
parameter and subsequent defect formation and relaxation.
The Kibble-Zurek mechanism (KZM) provides a general

framework for defect density estimation [2–4], where the
system’s correlation length ξ, after passing through the
critical region, is assessed for a given quench rate using
the system’s equilibrium properties near the critical point
[5] and assumed to determine the characteristic length scale
of the spatial domains of the symmetry-broken phase and,
consequently, the defect density. The relationship between
the defect density and the quench rate was predicted to
follow a universal power law and has been tested by many
experiments [6–24]. Nevertheless, the Kibble-Zurek (KZ)
theory inherently lacks the ability to quantitatively predict
the average value of defect density, because it omits the
defect formation dynamics after the freeze-out period in the
critical region [25–28].
In order to produce well-defined topological defects, the

order parameter must grow sufficiently, and during the
growth period, the spatial fluctuations of the order param-
eter is inevitably coarsened, affecting the defect formation
probability. We refer to this coarsening as early coarsening,
distinguished from the coarsening at later times, where

defects decay as the system relaxes to an equilibrium state
(Fig. 1). Some theoretical studies have shown that the early
coarsening, along with possible coarsening within the
critical region [25], simply gives a logarithmic correction
to the defect density [3,29]; but it was recently asserted
that it can be sufficient enough to cause defect density
saturation for fast enough quenches [28]. Such defect
density saturation was observed in ultracold atomic gas
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FIG. 1. Early coarsening in a quenched Bose gas. As a thermal
Bose gas is cooled into a superfluid phase, it experiences an early
coarsening period (green), after passing through the critical
region (blue) but before the order parameter has grown signifi-
cantly (tfr < t < td), during which the spatial fluctuations of the
system are coarsened, reducing the defect creation probability.
Tc denotes the critical temperature. In the critical region, the
system’s dynamics is effectively frozen due to the divergence of
its relaxation time at the critical point. In the upper row, the
system’s quench evolution is illustrated, where the boundaries of
spatial domains of the symmetry-broken phase are indicated by
dashed lines and quantum vortices are denoted by the white
circles.

PHYSICAL REVIEW LETTERS 128, 135701 (2022)

0031-9007=22=128(13)=135701(6) 135701-1 © 2022 American Physical Society

https://orcid.org/0000-0001-7105-7248
https://orcid.org/0000-0002-2280-8049
https://orcid.org/0000-0002-6964-6788
https://orcid.org/0000-0002-1126-7259
https://orcid.org/0000-0003-0481-9841
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.135701&domain=pdf&date_stamp=2022-04-01
https://doi.org/10.1103/PhysRevLett.128.135701
https://doi.org/10.1103/PhysRevLett.128.135701
https://doi.org/10.1103/PhysRevLett.128.135701
https://doi.org/10.1103/PhysRevLett.128.135701


experiments [21–24], and, furthermore, its possible asso-
ciation with the early coarsening dynamics was demon-
strated, ruling out the alternative explanation relying on
rapid annihilation of defects due to their high density [23].
In this Letter, we present a direct observation of the early

coarsening effect in spontaneous defect formation in a
thermally quenched atomic Bose gas. We use a two-step
quench protocol, where the sample is successively cooled
with two different quench rates so that the temperature
change during and after passing through the critical region
can be effectively controlled separately. We observe that
the mean number of created quantum vortices is reduced
as the latter quench rate decreases, and, surprisingly, the
suppression factor is independent of the initial quench
rate, indicating the existence of universal early coarsening
dynamics in the quenched system. Our results clearly
demonstrate the early coarsening effect in spontaneous
defect formation and provide a deeper perspective on the
universal scaling of the defect density with quench rate,
beyond the original KZM.
Our experiment starts by preparing a cold thermal 87Rb

gas in an optical dipole trap (ODT) with a highly oblate and
elongated geometry [23,30]. The initial sample contains
≈3.3 × 107 atoms at a temperature of ≈480 nK. Then, the
sample is evaporatively cooled by lowering the ODT depth
U from Ui ¼ 1.15Uc to Um ¼ 0.8Uc and successively to
Uf ¼ 0.27Uc in a piecewise linear manner. Here, Uc is the
critical trap depth for Bose-Einstein condensation, deter-
mined for an equilibrium sample, where the atom number
is measured to be ≈3.0 × 107. At the end of the quench,
the typical atom number is ≈1.2 × 107, and the sample
temperature is ≈50 nK. In equilibrium, the condensate
fraction is about 80%, and the Thomas-Fermi radii are
Rx;y;z ≈ ð65; 244; 2.8Þ μm. After the quench, a hold time of
τh ¼ 1.25 s is applied to facilitate defect formation [23],
and the created vortices are detected by imaging the sample
after a time of flight of 40.4 ms. The linear relationship
between the sample temperature and the trap depth was
confirmed for the whole range of our quench parameters, as
described in Ref. [23], ensuring that the sample is suffi-
ciently thermalized during the quench evolution. The
elastic collision time of atoms is estimated to be ≈1 ms
for the peak atom density at the critical point.
Figure 2(a) shows a schematic of the two-step quench

protocol. The two cooling steps proceed with variable time
durations τ1 and τ2, giving the quench rates r1 ¼ ½ðUi −
UmÞ=Uc� × ð1=τ1Þ and r2 ¼ ½ðUm −UfÞ=Uc� × ð1=τ2Þ,
respectively. In our experiment, r1ð2Þ varies from rm ¼
0.08 s−1 to rM ¼ 1.17 s−1, and the intermediate trap depth
Um ¼ 0.8Uc is chosen such that the sample has a negligible
condensate fraction (< a few percent) immediately after the
first cooling step [31]. This ensures that the condensate
growth mostly occurs in the second quench period, and,
thus, we can modulate the early coarsening dynamics with
the variable quench rate r2. According to previous 87Rb

experiments [19], the unfreeze time tfr, which is the time
required to pass the critical region (Fig. 1), is estimated to
be ≈55 ms (≪ τ1) for our fastest quench [32], and it is
reasonable to assume that the initial seed structure of
ordered-phase domains is implanted at the end of the first
quench step.
In the two-step quench experiment, the early coarsening

dynamics can be directly investigated by the dependence
of the vortex number Nv on r2. However, in the analysis
of Nv, the density inhomogeneity of the trapped sample
must be considered [33,34]. The local critical temperature
Tc;local varies over the sample, which is higher in the high-
density central region than in the low-density outer region
[Fig. 2(b)], so the phase transition occurs at different times
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FIG. 2. Two-step quench experiment. (a) Schematic of the
quench protocol. The trap depth U is linearly lowered from Ui to
Um for time τ1 with rate r1 and from Um to Uf for τ2 with rate r2.
Uc denotes the critical trap depth for Bose-Einstein condensation.
After a hold time τh, a time-of-flight image is taken to detect
created vortices. (b) For a trapped sample, the local critical
temperature Tc;local spatially varies over the sample. The inner
(outer) region A (B) undergoes a phase transition for
U > Umð< UmÞ. The inset shows images of samples in equi-
librium at U ¼ Um (left) and U ¼ Uf (right). (c) Mean vortex
number N̄v as a function of the quench rate on log-log axes. Open
circles denote the data obtained with r1 ¼ r2, and red (blue) solid
circles show the data for fixed r2ðr1Þ ¼ 0.08 s−1. The solid line
shows a power-law function with exponent αKZ ¼ 2.6, fit to the
data with r1 ¼ r2 in the scaling regime. Each data point in the
blue and red (black) curves was obtained from 30 (20) realiza-
tions of the same experiment. The error bars indicate the standard
errors of the mean. If the error bars are invisible, they are smaller
than the marker size. (d) Representative images of samples for
various r1 and r2, displaying quantum vortices by their expanded,
density-depleted cores.
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in different regions of the sample during the quench. For the
two-step quench, we can divide the sample into two distinct
regions: the central region A, where the local phase
transition occurs for U > Um, i.e., the first quench period,
while for the outer region B, it occurs during the second
quench period with U < Um. Figure 2(b) shows two time-
of-flight images of the sample in equilibrium at U ¼ Um
and U ¼ Uf, indicating that the area of region A is ≈36%
of the final sample area. In view of the local density
approximation, we model the total vortex number Nv as a
sum of two contributions:

Nv ¼ NAðr1; r2Þ þ NBðr2Þ; ð1Þ

where NA and NB represent the numbers of vortices created
in regions A and B, respectively. Note that NB is assumed
to be determined only by r2, because region B remains
thermal with T > Tc;local during the first quench period. In
the following, we analyze our measurement results based
on this model.
In Fig. 2(c), we display the mean vortex number N̄v as a

function of the quench rate for three representative cases:
(I) r1 ¼ r2, (II) r2 ¼ rm, and (III) r1 ¼ rm. Setting r1 ¼ r2
corresponds to a typical single-step quench, and, as
observed in Ref. [23], N̄v exhibits power-law scaling for
slow quench rates and saturates for quench rates over
0.3 s−1. We obtain the power-law exponent αKZ ¼ 2.6ð1Þ
from a fit to the data in the scaling regime, which is
determined from a saturation model fit to the N̄v curve [31].
The value of αKZ is slightly smaller than our previous
measurement [23], which is due to the refinement of our
trap center control during the quench [31].
When r2 is fixed at the slowest value rm (case II), N̄v

initially follows the single-step quench curve but quickly
becomes saturated. Since NBðrmÞ < Nvðrm; rmÞ ≈ 1, the
measured N̄v can be assumed to mainly reflect NAðr1; rmÞ,
the vortex number of region A. In comparison with the
single-step quench case, the defect saturation occurs at a
lower r1, which is accounted for by the condensate fraction
being negligible at the end of the first quench step in the
experiment. For the fastest r1 ¼ rM, the maximum vortex
number is N̄v;max < 10, and its ratio to N̄v;max ≈ 60 in the
single-step quench case is almost 2 times smaller than the
area ratio η ≈ 0.36 of region A to the whole sample. This
means that NAðrM; rmÞ < ηNvðrM; rMÞ < NAðrM; rMÞ,
indicating the early coarsening dynamics. The second
inequality results from the fact that the central region
has a higher defect formation probability than the outer
region.
In case III with r1 ¼ rm, the mean vortex number is also

reduced compared to the single-step quench, which is due
to the suppression of defect formation in region A. It is
notable that the increasing rate of N̄v becomes faster as r2
increases over 0.13 s−1. This is caused by a rapid increase
in NB with increasing r2, and we infer that NB > NA for

r2 > 0.13 s−1; i.e., there are more vortices in the outer
region than in the central region.
To investigate the early coarsening effect in a systematic

manner, we measure N̄v by scanning over a range of values
of r1 and r2. The measurement results are displayed in
Fig. 3. As expected from the results as shown in Fig. 2(c),
N̄v monotonically increases with both r1 and r2 and
saturates at fast quench rates. To isolate the contribution
of NA to N̄v, we consider the following quantity:

Dðr1; r2Þ ¼ N̄vðr1; r2Þ − N̄vðrm; r2Þ
¼ NAðr1; r2Þ − NAðrm; r2Þ: ð2Þ

For a given value of r2, this quantifies the increase in N̄v as
r1 increases from rm. Therefore, the r2 dependence of D
should unambiguously reveal the early coarsening effect in
the defect formation process.
In Fig. 4(a), we plot D as a function of r2 for various r1.

We observe that, regardless of the value of r1, D increases
over the range of r2 < 0.5 s−1. This is consistent with the
effect of early coarsening; i.e., with a slower second quench
at a small r2, the system stays at a high temperature for
longer such that the condensate grows slowly, allowing
more time for the coarsening of the spatial fluctuations
before defects are stably formed, thus reducing the final
defect number.
Meanwhile, the different plots in Fig. 4(a) show similar

profiles for all values of r1. In Fig. 4(b), we replot the four
data curves by multiplying each curve by a scaling factor
to give the same average value for the four slowest r2.
Remarkably, we find that the four scaled curves overlap.
This indicates the existence of a universal curve fðr̃2Þ that
satisfies the factorization of D ¼ fðr̃2ÞDðr1; rmÞ with
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FIG. 3. Mean vortex number N̄v as a function of r1 and r2 on
three-dimensional log axes. Each data point was obtained from 20
realizations of the same experiment, except one with r1ð2Þ ¼ rm
which was obtained from 30 measurements [the same data in
Fig. 2(c)]. The error bars indicate the standard errors of the mean.

PHYSICAL REVIEW LETTERS 128, 135701 (2022)

135701-3



r̃2 ¼ r2=rm. To corroborate this factorization, we plot D as
a function of r1 for four different values of r2 in Fig. 4(c).
As can be seen in Fig. 4(d), the four curves overlap after
being divided by fðr̃2Þ, where the value of fðr̃2Þ was
determined by averaging the four curves in Fig. 4(b). The
curve overlaps observed in Figs. 4(b) and 4(d) lead us to
suggest the following relation:

NAðr1; r2Þ ¼ fðr̃2ÞNAðr1; rmÞ; ð3Þ

where fðr̃2Þ represents the suppression factor accounting
for the universal coarsening dynamics in the early stage
of defect formation. This finding is the main result of
this work.
The profile of fðr̃2Þ provides more information on

the early coarsening effect. Similar to N̄v in the single-
step quench case, it shows a power-law-like behavior for
low r2 and becomes saturated for high r2 > 0.3 s−1.
This is consistent with the postquench condensate growth
observed for high r2 [31]. From a power-law function fit to
the data in the scaling regime r2 ≲ 0.2, determined using a
saturation model curve as in the single-step quench case
[31], we obtain a scaling exponent of β ¼ 1.3ð2Þ [Fig. 4(b),
inset]. It is surprising that the measured value is large,
approximately half the Kibble-Zurek exponent of αKZ ¼
2.6ð1Þ in the single-step quench experiment [Fig. 1(c)]. In
previous studies, αKZ has been associated only with how
fast the system passes through the critical region, i.e., the
seeding process, neglecting the early coarsening dynamics.
Our observation of large β challenges the conventional
interpretation of αKZ based on the KZ theory, demonstrat-
ing the significance of the early coarsening dynamics in the
defect formation.

An important follow-up question is whether the difference
between the two exponents, αKZ − β ≈ 1.3, can represent the
scaling exponent for the KZ seeding process. Currently, we
have no clear answer to the question. In the inset in Fig. 4(d),
we display NAðr1; rmÞ as a function of r1, which, as shown
in Eq. (3), is the number of vortices in region A after scaling
it by the coarsening factor fðr̃2Þ. From Eqs. (2) and (3),
NAðr1; rmÞ ¼ D=fðr̃2Þ þ NAðrm; rmÞ, and we calculate
this by determining D=f by averaging the data in
Fig. 4(d) and assuming NAðrm; rmÞ ¼ N̄vðrm; rmÞ. A clear
power-law behavior is not observed. It should be noted
that our analysis is based on the two-region model that
ignores possible physics at the regional interface in the
inhomogeneous system, such as phase information propa-
gation that would suppress defect formation [33,34].
Further theoretical and experimental investigations are
warranted. Similar two-step quench experiments with
homogeneous samples [19,20], in particular, correlating
the defect density with the correlation length ξ [19], would
be fruitful to reveal the details of the universal early
coarsening dynamics.
In summary, we have investigated the early coarsening in

a quenched atomic Bose gas. The two-step quench protocol
was introduced to effectively control the coarsening dynam-
ics during spontaneous defect formation, and the defect
number in the central region of the sample was found to be
factorizable into functions of each quench rate. Our results
demonstrate the existence and characteristics of early coars-
ening, highlighting the condensate growth dynamics after
passing through the critical region. We anticipate that the
early coarsening dynamics of the quenched system could be
further studied in light of the physics of nonthermal fixed
points [35,36], which considers the universal scaling of the
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spatiotemporal evolution of quantummany-body systems far
from equilibrium.
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