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We investigate the properties of the blackbody spectrum by direct numerical solution of the classical
equations of motion of a one-dimensional model that contains the essential general features of the field-
matter interaction. Our results, which do not rely on any statistical assumption, show that the classical
blackbody spectrum exhibits remarkable properties: (i) a quasistationary state characterized by scaling
properties, (ii) consistency with the Stefan-Boltzmann law, and (iii) a high-frequency cutoff. Our Letter is a
preliminary step in the understanding of statistical properties of infinite-dimensional systems.
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Introduction.—The inability of classical physics to
account for the experimentally observed frequency spec-
trum of blackbody radiation is at the origin of quantum
theory. In spite of desperate attempts, the falloff of the
blackbody curve at high frequencies could not be explained
by classical mechanics. To be more precise, however, this is
not a failure of classical theory per se. Indeed, it is the
classical theory with the additional assumption of energy
equipartition which leads to the Rayleigh-Jeans radiation
law, implying the unphysical ultraviolet catastrophe [1].
On the other hand, classical ergodic theory, from which

equipartition theorem follows, is valid only for systems
with a finite number of degrees of freedom. Ergodicity, that
is, independence of time averages on initial conditions,
does not imply equipartition of energy for a system with
infinite degrees of freedom, since there is no invariant
measure at hand to define a microcanonical ensemble. A
main difficulty here stems from the fact that the radiation
field has Nm ¼ ∞ degrees of freedom (modes) and that the
two limits Nm → ∞ and time t → ∞ do not commute.
Therefore, the question of what classical mechanics pre-
dicts on the properties of the radiation field in equilibrium
with matter is still open.
Even more interesting is the Stefan-Boltzmann law,

which states that at temperature T the total radiation energy
E ∝ T4. It is remarkable that this formula, which is well in
agreement with experimental data, was derived by
Boltzmann in 1884 on a purely classical thermodynamics
basis [2]. As such, it should be a consequence of the
classical equations of motion. Notice that this result is

formally in contradiction with the Rayleigh-Jeans law,
according to which E ∝ T.
What about the solution of the nonlinear classical

Newton-Maxwell equations of motion that govern the
field-matter interaction? Will dynamics agree, and to what
extent, with the above classical statistical and thermo-
dynamics predictions? After 150 years, this question
concerning a fundamental problem in the development
of modern physics remains unsolved.
Here, we numerically integrate the exact classical equa-

tions of motion of a blackbody model, without any
statistical assumption, and we show that classical dynamics
leads to a quasistationary state that is consistent with the
Stefan-Boltzmann law and where the energy distribution
over the field normal modes exhibits an exponentially
decreasing tail. Therefore, the solution of the classical
equations of motion naturally leads to a high-frequency
cutoff of the blackbody spectrum.
Model.—To investigate the dynamics of charged par-

ticles interacting with the electromagnetic field in a cavity
is a formidable task. Here we consider a variant of a model
introduced long ago [3] and afterward studied in several
papers [4–10]. In spite of its simplicity, our model retains
the general essential features of field-matter interaction:
(i) the field modes can only exchange energy via interaction
with matter and (ii) the free electromagnetic field in the
cavity is by itself a linear system and nonlinearity is
provided by matter.
A sketch of our model is drawn in Fig. 1. It consists of an

electromagnetic field confined in between two parallel,
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perfectly reflecting plane mirrors, a distance 2l apart. We
take Cartesian coordinates xyz with the x axis normal to the
mirrors and restrict to excitations only dependent on x, thus
getting a one-dimensional radiant cavity, the normal modes
of which have angular frequencies ωk. We then introduce
Np coupled plates, which are all parallel to the mirrors and
which are constrained to move only in the z direction. Only
the plate positioned midway between the mirrors is charged
and therefore interacts with the normal modes of the field.
We denote by σ and m the charge and mass densities per
unit surface of the plate, and fðxÞ is the normalized
(transverse) distribution of charge in the plate, whose
thickness is 2δ.
The Hamiltonian of the full system, plates plus field, can

be written as

H ¼
XNp
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where Pj and zj are the conjugate momentum and
displacement of the jth plate, Ṽ and V are the on site
and interacting potentials of plates, and pk and qk are
conjugate variables of the kth normal mode of the field with
frequency ωk. Note that the field normal modes are infinite
but, as we shall see below, only a finite, small number
NmðtÞ of them are actually involved during the computation

time. In Eq. (1), the term ð1=2mÞðP1 − ε
P

k akqkÞ2
accounts for the interaction between the charged plate
and the normal modes, where ε ¼ 2σ

ffiffiffiffiffiffiffi
π=l

p
is the matter-

field coupling parameter. We assume that fðxÞ is an even
function, and therefore, even normal modes do not interact
with the charged plate, while for an odd normal mode with
wave number 2k − 1, ak ¼

R
δ
−δ fðxÞ cosðωkx=cÞdx, where

c is the speed of light and ωk ¼ ðπc=2lÞð2k − 1Þ.
If the charge is removed, ε ¼ 0, the plates and the modes

are decoupled. We choose, as interaction potential among
the matter degrees of freedom, the lattice ϕ4 model [11,12]

ṼðzjÞ ¼
1

4
γz4j ; Vðzj−1; zjÞ ¼

1

2
κðzj − zj−1Þ2: ð2Þ

We checked that, for Np > 4 and for an average energy per
plate larger than 0.1 (in our units l ¼ π, c ¼ m ¼ σ ¼ 1,
and the Boltzmann constant kB ¼ 1; moreover, we set
γ ¼ κ ¼ 1), this model is chaotic with Np positive
Lyapunov exponents.
Initially, all the energy is assigned to matter only (the

plates), and we focus on how the energy is transferred and
distributed among the field normal modes. For the charge
distributionwe choosefðxÞ ¼ A expðδ2=ðx2 − δ2ÞÞ (jxj < δ)
(a compactly supportedC∞ function, with A normalization
constant, A ¼ 45.04… for the width parameter δ ¼ 0.05
used in our simulations). We have verified that, qualita-
tively, the results do not depend on the particular choice of
the charge distribution, provided it is a smooth function
[13]. In addition, we take Np ¼ 16 and we have verified
that the whole system remains chaotic during the entire
relaxation process accessible to simulations (t ∼ 109) (see
Supplemental Material [13]).
Results.—Since our simulations are for energies well

above the stochasticity threshold, for any finite number of
field modes, equipartition is expected among the degrees of
freedom. Our first step is therefore to investigate how long
it takes for equipartition to set in. As shown in Fig. 2,
equipartition is reached among the plates after a relatively
short time τp that, basically, does not depend on the number
Nm of field modes. Instead, global equipartition among
field and matter degrees of freedom is reached after a time
τm that exponentially increases with Nm. The best fitting
suggests τm ∼ e1.29Nm , in clear contrast with τp ≈ 103 [13].
If we extrapolate this exponential dependence of the
equipartition time τm to larger Nm values, then it turns
out that already for Nm ≈ 48 field normal modes, a time of
the order of the age of the Universe is required in order to
reach equipartition (in a cavity of l ∼ 1 m). Note that the
two limits t → ∞ and Nm → ∞ do not commute. If one
takes the limit t → ∞ first, then one will always get
equipartition, while for the blackbody problem it is
necessary to take the limit Nm → ∞ first. In order to
simulate this latter situation, in our computations we take

FIG. 1. Schematic drawing (top) of the classical radiant cavity
model. A charged plate of width 2δ is placed at the center of the
cavity bounded by two mirrors a distance 2l apart. The charged
plate interacts with a fixed number of neutral plates (to the left in
the figure) and with the normal modes of the electromagnetic
field. The topology of interactions is also shown (bottom), where
the gray dot, red dots, and blue dots are for the charged plate, the
neutral plates, and the field modes, respectively.
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Nm ¼ 120, which, in view of the results of Fig. 2, is
sufficiently large to neglect the higher normal modes.
We now turn to the energy distribution over the field

normal modes. In Fig. 3(a) we plot the average energy

hEm;kðtÞi of the normal modes over their frequency. The
main feature of the distribution hEm;ki is the presence of a
plateau followed by a rapid, exponential decay. The
average value hEm;ki of the plateau normal mode energies
is equal to the average energy hEp;ji of the plates. This
suggests that the field modes in the plateau are thermalized
with matter, at temperature T ¼ hEp;ji. This thermalization
process evolves in time very slowly; indeed, as seen in
Fig. 3(a), it takes about 3 orders of magnitude in time (from
105 to 108) in order to increase only by four the number of
thermalized modes. This observation is consistent with the
results of Fig. 2 and suggests that the system relaxes to a
quasistationary state, after which it evolves very slowly,
logarithmically in time.
It is remarkable that the quasistationary state has a clear

scaling property. This is shown in Figs. 3(b) and 3(c),
where we plot hEm;kðtÞi=TðtÞ over ½ωk − α lnðtÞ� and over
β½ωk − α lnðtÞ�, where α and β depend on the total energy
only, α ¼ 0.23E0.24

tot and β ¼ 3.22E−0.22
tot based on the best

fitting of the data for 104 ≤ t ≤ 108 and 24 ≤ Etot ≤ 210.
We cannot give a rigorous explanation for the appear-

ance of an exponential cutoff. Nevertheless, we can provide
an intuitive understanding by observing (see Fig. 4) that, as
is typically the case for nonlinear interacting systems, the
power spectrum of the charged plate has a finite frequency
band, followed by an exponential tail. For the field modes
within this band, thermalization with matter is achieved
rapidly. On the other hand, for the field modes with
frequencies in the exponential tail, thermalization requires
exponentially long timescales. We can see from Fig. 4 that
the power spectrum is, in practice, independent of the
numberNp of plates (for a fixed energy per plate), while for
a given Np the bandwidth increases with the total energy
Etot. Such dependence is consistent with the reduction of
the thermalization times (up to a given frequency) with
increasing Etot.

FIG. 2. The relaxation time of plates (τp) and of both plates and
field modes (τm), where Nm field modes are considered in the
simulation. Here the number of plates Np ¼ 16, and the total
energy Etot ¼ 24 is initially assigned to the charged plate as
kinetic energy. For other initial conditions where the total energy
is distributed randomly among the plates, τm ∼ e1.29Nm still holds.

(a)

(c)(b)

FIG. 3. (a) The average energy of the plates (full symbols) and
of the field modes (half filled symbols), for total energy Etot ¼ 24

at different times. (b) hEm;ki scaled by the temperature of plates
and the mode frequencies being shifted by αln(t). (c) hEm;ki
versus the scaled and shifted frequencies at a given time. The
results for different total energies collapse on the same curve. The
energy of the system is initially randomly assigned to the plates as
kinetic energy.

(a) (b)

FIG. 4. Power spectrum of the time series P1ðtÞ for the
momentum of the charged plate, in a system of Np plates with
total energy Etot, for (a) Etot=Np ¼ 8 and (b) Np ¼ 16.
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Note that the total energy of the modes in the exponential
tail is negligible compared with that of the thermalized
modes on the plateau. Therefore, it is tempting to con-
jecture that the quasistationary state should be approxi-
mately described by equilibrium thermodynamics. To this
end, following Boltzmann, we start from the fundamental
thermodynamic relation dU ¼ TdS − pdV, which implies

∂U
∂V

����
T
¼ −pþ T

∂p
∂T

����
V
; ð3Þ

where U ¼ UðT; VÞ is the total energy, S is the entropy, p
is the pressure of the radiation field, V is the volume of the
cavity, and T is the temperature of the plates. The relation
between the energy of the electromagnetic radiation and its
pressure has been derived by Boltzmann and for the one-
dimensional case reads

p ¼ u; ð4Þ

where u ¼ U=V is a universal function of temperature and
independent of volume. From Eq. (3) one then has

uðTÞ ¼ CT2; ð5Þ

where C is a constant. This is the Stefan-Boltzmann law in
one dimension. Quite remarkably, these predictions based
on equilibrium thermodynamics are consistent with our
model in the quasistationary state. In Fig. 5, we plot p, u,
and T versus the evolution time for Etot ¼ 24. Here p is
numerically computed (see Supplemental Material [13])
and T ¼ hEp;ji is the temperature of matter. It can be
noticed that the relation (4) between energy density and
pressure sets in almost immediately. In Fig. 6, we plot u
versus T for various values of the total energy of the
system. It is seen that u ∝ TB where the exponent BðtÞ
increases from 1.07 to 1.21, as time t goes from 104 to 108.
This dependence is compatible with Eq. (5). Indeed the

inset of Fig. 6 suggests that the value 2 might be
approached logarithmically in time.
Summary and discussion.—In summary, we have studied

a model of a classical radiant cavity. If one considers a
fixed, finite number Nm of field modes, then the system, as
expected, approaches equipartition, even though the relax-
ation times increase exponentially with the number Nm of
modes. If instead one takes the limit Nm → ∞ first, as it is
required in order to study the blackbody radiation, then the
system relaxes to a quasistationary state characterized by a
low frequency plateau, followed by a high frequency
exponential cutoff. The computed field energy density
turns out to be consistent with the Stefan-Boltzmann law.
Our model contains the basic ingredients of an electro-

magnetic field interacting with matter. Since interaction
among the field modes is mediated by mechanical degrees
of freedom, in general, we expect thermalization of the field
modes with matter to be effective only within the frequency
bandwidth of mechanical motion, with slow thermalization
outside such bandwidth. We therefore conjecture that the
appearance of a time-dependent cutoff is a general feature of
classical dynamics of matter-field interaction. Nevertheless, it
would be interesting to investigate higher-dimensional mod-
els or, more generally, other classical field theories. Such
studies could help our understanding of the statistical proper-
ties of nonlinear dynamical systems with infinite degrees of
freedom. In this frame, the results presented here on a
classical model can be considered a preliminary step before
addressing ergodicity in quantum field theories. This problem
will require a nontrivial extension of concepts and tools

FIG. 5. The pressure p, the energy density u of the cavity, and
the temperature T of the plates as functions of time.

FIG. 6. The energy density u in the cavity versus the temper-
ature T of the plates at various evolution times. At a given
time, the seven data points correspond to total energies
Etot ¼ 24; 25;…; 210, respectively. At each time, the data exhibit
a power law relation u ∝ TB, and the best fitting shows that the
power law exponent BðtÞ slowly changes from 1.07 to 1.21 as
time changes by 4 orders of magnitude. The fitting line in the
inset gives the expression 2 − BðtÞ ∼ ðln tÞ−0.33.
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recently developed for the investigation of thermalization and
localization in many-body quantum systems [14–18].
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