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The first measurement of lepton-jet momentum imbalance and azimuthal correlation in lepton-proton
scattering at high momentum transfer is presented. These data, taken with the H1 detector at HERA, are
corrected for detector effects using an unbinned machine learning algorithm (MULTIFOLD), which considers
eight observables simultaneously in this first application. The unfolded cross sections are compared with
calculations performed within the context of collinear or transverse-momentum-dependent factorization in
quantum chromodynamics as well as Monte Carlo event generators.
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Introduction.—Studies of jets produced in high energy
scattering experiments have played a crucial role in estab-
lishing quantum chromodynamics (QCD) as the fundamen-
tal theory underlying the strong nuclear force [1]. During the
current era of the Large Hadron Collider, experimental,
theoretical, and statistical advances have ushered in a new
era of precision QCD studies with jets [2,3] and their
substructure [4,5].

These innovations motivate new measurements of had-
ronic final states in the deep inelastic scattering (DIS),
e+ p — e+ X, at the HERA collider. DIS measurements
provide high precision to study jets, because of the minimal
backgrounds from the ep initial state and the excellent
segmentation, energy resolution, and calibration of the
HERA experiments.

In the DIS Born level limit, a virtual photon is exchanged
with a quark inside the proton to create a back-to-back

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
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the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

topology between the lepton and the resulting jet(s) as
shown in Fig. 1. The Born level limit represented a
background for most jet measurements by HI1 [6-16]
and ZEUS [17-24], which targeted higher-order QCD
processes and were carried out in the Breit frame [25].
While the one jet final state has been studied inclusively in
terms of the scattered lepton kinematics to determine
proton structure functions [26-30], the immense potential
of the jet kinematics in this channel is only now being
realized.

For example, single jet production has been proposed as
a key channel for extracting quark transverse-momentum-
dependent (TMD) parton distribution functions (PDFs)
[31-36]. In particular, measurements of back-to-back
lepton-jet production e + p — e + jet + X measured in
the laboratory frame provide sensitivity to TMD PDFs
in the limit when the imbalance ¢} = |p$ + py'| of the
transverse momentum of the scattered lepton (p%) and
the jet (p) is relatively small (¢F < p%~ pr) [33].
This corresponds to a small deviation from z in the
azimuthal angle between the lepton and jet axes
(AP = |z — (¢° — $®)|) in the transverse plane. TMD
PDFs are an essential ingredient for the quantum tomog-
raphy of the proton that probes the origin of its spin, mass,
size, and other properties.
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FIG. 1. A display of the H1 tracker and calorimeter detectors,
showing a DIS event with approximate Born kinematics,
eq — eq, which yields a lepton and a jet in a back-to-back
topology perpendicular to the beam axis.

The energy dependence of TMD PDFs can also probe
unexplored aspects of QCD as they follow a more complex
set of evolution equations than collinear PDFs [37-39],
involving components that cannot be calculated using
perturbation theory. A complete description remains open
in part because of a lack of precise measurements over a
wide kinematic range. Existing constraints from the DIS
data are at very low momentum transfer (Q> ~ 1 GeV?)
from fixed-target experiments [40—44]. Drell-Yan produc-
tion in fixed target [45-49] and collider experiments
[50-62] can provide TMD-sensitive measurements up to
high scales (Q* ~ 10000 GeV?). The HERA experiments
can cover the entire kinematic region Q? ~ 1-10000 GeV?,
so they can yield a key ingredient to connecting the existing
experimental and theoretical information, including with
lattice QCD calculations, which have made significant
advances in describing aspects of TMD evolution [63,64].

This Letter presents a measurement of jet production in
neutral current (NC) DIS events close to the Born level
configuration eq — eq. The cross section of this process is
measured differentially as a function of the jet transverse
momentum and pseudorapidity, as well as lepton-jet
momentum imbalance and azimuthal angle correlation.
This measurement probes a range of QCD phenomena,
including TMD PDFs and their evolution with energy.
A novel machine learning (ML) technique called
MULTIFOLD [65,66] is used to correct for detector effects
for the first time in any experiment, enabling the simulta-
neous and unbinned unfolding of the target observables.

Experimental method.—The H1 detector [67-72] is a
general purpose particle detector with cylindrical geometry.
The main subdetectors used in this analysis are the inner

tracking detectors and the liquid argon (LAR) calorimeter,
which are both immersed in a magnetic field of 1.16 T
provided by a superconducting solenoid. The central
tracking system, which covers 15° < 8 < 165° and the
full azimuthal angle, consists of drift and proportional
chambers that are complemented with a silicon vertex
detector in the range 30° < @ < 150° [73]. It yields a
transverse momentum resolution for charged particles of
6,/ Pr = 0.2%p7/GeV @ 1.5%. The LAR calorimeter,
which covers 4° < 0 < 154° and full azimuthal angle,
consists of an electromagnetic section made of lead
absorbers and a hadronic section with steel absorbers;
both are highly segmented in the transverse and longi-

tudinal directions. Its energy resolution is op/E =

11%/+/E/GeV @ 1% for leptons [74] and oy/E~x
50%/+/E/GeV @ 3% for charged pions [75]. In the
backward region (153° < 0 < 177.5°), energies are mea-
sured with a lead-scintillating fiber calorimeter [76].

This offline analysis uses data collected with the H1
detector in the years 2006 and 2007 when positrons and
protons were collided at energies of 27.6 and 920 GeV,
respectively. The total integrated luminosity of this data
sample corresponds to 136 pb~! [77].

This analysis follows an event selection used previously
[16]. The trigger used to select events requires a high
energy cluster in the electromagnetic part of the LAR
calorimeter. The scattered lepton is identified with the
highest transverse momentum LAR cluster matched to a
track, and is required to pass certain isolation criteria [78].
After fiducial cuts, the trigger efficiency is higher than
99.5% [16,28] for scattered lepton candidates with energy
E, > 11 GeV. A series of fiducial and quality cuts based
on simulations [6,16] suppresses backgrounds to a negli-
gible level.

The kinematics of the DIS reaction can be described by
the following variables: the square of the four-momentum
transfer Q2, which sets the scale at which the proton is
probed, and the inelasticity of the reaction y, which is
related to the scattering angle in the lepton-quark center-of-
mass frame. The ¥ method [79] is used to reconstruct y
and Q? as

y= Ziehad(Ei - Pi,z)
> ichad(Ei = pi) + Eo(1 —cos6,)
0 — E2sin*6,
-y

where 6, is the polar angle of the scattered lepton and
> (E; — p;.) is the total difference between the energy and
longitudinal momentum of the entire hadronic final state
(HFS). After removing tracks and clusters associated to the
scattered lepton, an energy flow algorithm [80-82] is used
to define the HFS objects that enter the sum ) ;cp.4-
Compared with other methods, the X reconstruction
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reduces sensitivity to collinear initial state quantum electro-
dynamic (QED) radiation e — ey, since the beam energies
are not included in the calculation. Events are required to
have45 < > (E; — p;.) < 65 GeV to suppress initial-state
QED radiation. Final state QED radiation is corrected for in
the unfolding procedure. Correction factors to account for
virtual and real higher-order QED effects are estimated
using the simulations described below. Electroweak effects
cancel in the normalized cross sections to below the percent
level and are neglected. Events with Q> > 150 GeV? and
0.08 <y < 0.7 are selected for further analysis.

Monte Carlo (MC) simulations are used to correct the
data for detector acceptance and resolution effects. Two
generators are used for this purpose: DJANGOH [83] 1.4
and RAPGAP [84] 3.1. Both generators implement Born
level matrix elements for the NC DIS, boson-gluon fusion,
and QCD Compton processes and are interfaced with
HERACLES [85-87] for QED radiation. The CTEQ6L
PDF set [88] and the Lund hadronization model [89] with
parameters fitted by the ALEPH Collaboration [90] are
used for the nonperturbative components. DJANGOH uses
the colour dipole model as implemented in ARIADNE [91]
for higher-order emissions, and RAPGAP uses parton show-
ers in the leading logarithmic approximation. Each of these
generators is combined with a detailed simulation of the H1
detector response based on the GEANT3 simulation program
[92] and reconstructed in the same way as the data.

The FASTIET3.3.2 package [93,94] is used to cluster jets
in the laboratory frame with the longitudinally invariant,
inclusive k; algorithm [95,96] and distance parameter
R = 1. The inputs for the jet clustering are HFS objects
with —1.5 < n,, < 2.75. Jets with transverse momentum

' > 5 GeV are selected for further analysis.

The input for the jet clustering at the generator level
(“particle level”) are final-state particles with proper life-
time ¢z > 10 mm generated with RAPGAP or DJANGOH,
excluding the scattered lepton. Reconstructed jets are
matched to the generated jets with an angular distance

selection of AR = \/( o = ee0)? + (e — et ) < 0.9.
The final measurement is presented in a fiducial volume

defined by 02> 150GeV2 0.2 < y < 0.7, p¥' > 10 GeV,

and —1.0 < iTﬁ, < 2.5; the total inclusive jet cross section

al
in this region is denoted as ojq.

Unfolding method.—Following successful applications
of artificial neural networks (NNs) to HI event
reconstruction [16,97,98] the ML-based MULTIFOLD tech-
nique [65,66] is used to correct for detector effects. Unlike
other widely used forms of unfolding based on regularized
matrix inversion [99-101], MULTIFOLD allows the data to be
unfolded unbinned and simultaneously in many dimensions,
due to the structure and flexibility of NNs. Furthermore,
unlike other approaches to unbinned [102-107] or ML-
based [104-109] unfolding, MULTIFOLD reduces to the
widely studied iterative unfolding approach [99,110,111]

when the inputs are binned. At each iteration, MULTIFOLD
employs NN classifiers to estimate likelihood ratios that are
used as event weights. At each iteration, a classifier is trained
to distinguish data from simulation, and then the corre-
sponding weights at the detector level are inherited by the
corresponding particle-level events in simulation. To accom-
modate the stochastic nature of the detector response, a
second classifier is used to distinguish the original simu-
lation from the one with detector-level weights. This
produces a weighting map that is a proper function of the
particle-level phase space. The weights can then be applied
to the detector level. This process is repeated a total of five
times. The number of iterations is chosen such that the
closure tests described below do not dominate the total
uncertainty. A brief technical review of the MULTIFOLD
method can be found in the Supplemental Material [112],
including the statistical origin of the reweighting [113,114]
and properties of the neural networks [115].

The unfolding is performed simultaneously for eight
observables (5%, p¢, pr', 1<, ¢, '/ Q, and Ag*!) and is
unbinned. The distributions of the four target observables
(5, e, ¢r'/Q, and Ag) are presented as separate
histograms for the quantitative comparison of predictions to
data; the other observables provide a comprehensive set
of possible migrations and detector effects of the target
observables. All NNs are implemented in KERAS [116] and
TENSORFLOW [117] using the ADAM [118] optimization
algorithm. The networks have three hidden layers with 50,
100, and 50 nodes per layer, respectively, using rectified
linear unit activation functions for intermediate layers and a
sigmoid function for the final layer. At each iteration, or
step, the data and simulations are split into 50% for
training, 50% for validation, and all simulated events are
used for the final results. Binary cross-entropy is used as
the loss function and training proceeds until the validation
loss does not improve for ten epochs in a row. All of the
algorithm hyperparameters are near their default values,
with small changes made to qualitatively improve the
precision across observables.

The statistical uncertainty of the measurement is deter-
mined using the bootstrap technique [119]. For a discussion
of the interplay between deep learning and the bootstrap,
see, e.g., Refs. [120,121]. In particular, the unfolding
procedure is repeated on 100 pseudo datasets, each con-
structed by resampling the data with a replacement. As the
number of MC events significantly exceeds the number of
data events, the MC dataset is kept fixed. The resulting
statistical uncertainty ranges from about 0.5% to 10% for
the jet transverse momentum measurement, and it ranges
from 0.5% to 3.5% for the other measurements. Variations
from the random nature of the network initialization and
training are found to be negligible compared with the data
statistical uncertainty.

Uncertainties.—Systematic uncertainties are evaluated
by varying an aspect of the simulation and repeating the
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unfolding. The procedures used here closely follow other
recent H1 analyses [6,16]. The HFS-object energy scale
uncertainty originates from two contributions: HES objects
contained in high p7 jets and other HFS objects. In both
cases, the energy-scale uncertainty is 1% [16,97]. Both
uncertainties are estimated separately by varying the
corresponding HFS energy by +1%. The uncertainty of
the measurement of the azimuthal angle of the HFS objects
is £20 mrad. The uncertainty of the measurement of the
energy of the scattered lepton ranges from +0.5% at
backward and central regions [122] to +1% at forward
regions [16]. The uncertainty of the measurement of the
azimuthal angle of the scattered lepton is 41 mrad [28].
The uncertainty associated with the modeling of the
hadronic final state in the event generator used for
unfolding and acceptance corrections is estimated by the
difference between the results obtained using DIANGOH
and RAPGAP. Given that the differential cross sections are
reported as normalized to the inclusive jet cross section,
normalization uncertainties such as luminosity scale or
trigger efficiency cancel in the ratio.

The bias of the unfolding procedure is determined by
taking the difference in the result when unfolding with
RAPGAP and with DJIANGOH. This procedure gives a con-
sistent result to unfolding detector-level RAPGAP with
DJIANGOH (and vice versa). It was also verified that
unfolding RAPGAP with itself using statistically indepen-
dent samples gives unbiased results within MC statistical
uncertainties. The RAPGAP and DJANGOH distributions
bracket the data and have rather different underlying
models. Therefore, comparing the results with both gen-
erators provides a realistic evaluation of the procedure bias.
This uncertainty is typically below a few percent, but

reaches 10% at low ¢/ Q.

The total systematic uncertainty ranges from 2% to 25%
for pl'; from 3% to 7% for nloy ; from 4% to 15% in ¢/ O;
and from 4% to 6% for A¢°..

Theory predictions.—The unfolded data are compared
with fixed order calculations within perturbative QCD
(PQCD) and calculations within the TMD factorization
framework. The PQCD calculation at next-to-next-to-
leading order (NNLO) accuracy in QCD [up to O(a?)]
was obtained with the POLDIS code [123,124], which is
based on the projection to Born method [125]. These
calculations are multiplied by hadronization corrections
that are obtained with PYTHIA8.3 [126,127] using its
default set of parameters. These corrections are smaller
than 10% for most kinematic intervals and are consistent
with corrections derived by an alternative generator,
HERWIG7.2 [128,129], using its default parameters. The
uncertainty of the calculations is given by the variation the
factorization and renormalization scale Q° by a factor of 2
[123,124] as well as NLOPDF4LHCI15 variations [130].

The TMD calculation uses the framework developed in
Refs. [33,34] using the same jet radius and algorithm used

in this Letter (This differs from the original paper [33] using
the anti-k; algorithm. The difference is power suppressed
at the accuracy of the calculation.). The inputs are
TMD PDFs and soft functions derived in Ref. [131],
which were extracted from an analysis of semi-inclusive
DIS and Drell-Yan data. The calculation is performed at
the next-to-leading logarithmic accuracy. This calculation
is performed within TMD factorization, and no matching
to the high g7 region is included, where the TMD approach
is expected to be inaccurate. In contrast with PQCD
calculations, the TMD calculations do not require non-
perturbative corrections, because such effects are already
included. Calculations with the TMD framework are
available for the TMD sensitive cross sections, which

are ¢r'/Q and Ag. Uncertainties are not yet available
for the TMD predictions (The scale variation procedure that
is standard in the collinear framework does not translate
easily to the TMD framework [132].). Additional TMD-
based calculations are provided by the MC generator
CASCADE [133], using matrix elements from KATIE [134]
and parton branching TMD PDFs [135-137]. A first
setup integrates to HERAPDF2.0 [138], and a second
setup uses angular ordering and p; as the renormalization
scale [139,140].

Results.—The unfolded data and comparisons to pre-

dictions are presented in Fig. 2. The pi' and 7% cross

sections are described within uncertainties by the NNLO
calculation. Note that while the QED corrections are mostly
small, they are up to 25% at high #}5; and are essential for
the observed accuracy. This result complements measure-
ments [141] at lower Q> which were found to be in good
agreement with PQCD calculations [142]. The ¢r/Q
spectrum, measured here for the first time, is described
by the NNLO calculation within uncertainties in the region

;'t /0 > 0.2. Atlower values, the predictions deviate by up
to a factor of 2.5. The TMD calculation, which includes

resummation, describes the data from the low qJ;’t to up to
;t /0 ~ 0.6, which is well beyond the typically assumed

validity region of the TMD framework (¢'/Q < 0.25).
The agreement between the TMD calculation and data
supports the underlying TMD PDFs, soft functions, and
their TMD evolution, although lack of robust theory
uncertainties prevents us from drawing firm conclusions.
The NNLO calculation describes the A¢i spectrum within
uncertainties, except at low A¢® where deviations are
observed, as expected since in this region soft processes
dominate, and contributions from logarithmic terms are
enhanced. The TMD calculation describes the data well
for Agi® < 0.75 rad. The overlap of the pure TMD and
collinear QCD calculations over a significant region of the

;t/ Q and A¢* spectra indicate that these data could
constrain the matching between the two frameworks, which
is an open problem [143].
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FIG. 2. Measured cross sections, normalized to the inclusive jet
production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet
momentum balance (¢ / Q) (lower left), and lepton-jet azimuthal
angle correlation (A@®) (lower right). Predictions obtained with
the PQCD (corrected by hadronization effects, “NP”’) are shown
as well. Predictions obtained with the TMD framework are shown
for the ¢ /Q and A cross sections. At the bottom, the ratio
between predictions and the data are shown. The gray bands
represent the total systematic uncertainty of the measurement; the
bars represent the statistical uncertainty of the measurement,
which is typically smaller than the marker size. The error bar on
the NNLO calculation represents scale, PDF, and hadronization
uncertainties. The statistical uncertainties on the MC predictions
are smaller than the markers.

RAPGAP describes the p' and 7]y, cross sections within

uncertainties, whereas DIANGOH describes the p’ cross
section within uncertainty and shows small but significant

differences with the ’7{2}2 cross section. PYTHIAS.3 describes
the low pJTet spectrum well, but predicts a significantly
harder pjﬁt spectrum beyond about 30 GeV; there are also
significant deviations in the 77{;2 cross section. HERWIG7.2
describes the entire p’Tet spectrum well, but deviates from
the data at high #% and for all A¢i and ¢'/Q. The
CASCADE calculations describe the pjﬁt spectrum well but
fail for the 71]12{, shape; they also describe the data reasonably

well at low ¢/ Q and A¢ while missing the large values,
likely due to missing higher-order contributions. While no

event generator describes the ;t /Q and Ag cross
sections over the entire range, the data are mostly contained
within the spread of predictions.

Even though uncertainties are not yet available for the
TMD predictions, the spread in predictions that use

different TMD sets (including CASCADE) is comparable
to the experimental and fixed-order uncertainties. This
suggests that these data will have constraining power
toward a global description of TMD and collinear effects
across scales.

Summary and conclusions.—Measurements of jet pro-
duction in neutral current DIS events with Q% > 150 GeV?
and 0.2 <y < 0.7 have been presented. Jets are recon-
structed in the laboratory frame with the k; algorithm and
distance parameter R = 1. The following observables are
measured: jet transverse momentum and pseudorapidity, as

well as the TMD-sensitive observables Tet/ O (lepton-jet
momentum imbalance) and A¢ (lepton-jet azimuthal angle
correlation).

This Letter provides the first measurement of lepton-jet
imbalance at high Q?, a variable recently proposed [33,34]
for probing TMD PDFs and their evolution. The data agree
in a wide kinematic range with calculations that use TMD
PDFs extracted from low Q? semi-inclusive DIS data and
parton branching TMD PDFs extracted from other HERA
data. The experimental uncertainty is comparable to the
spread from predictions using different TMD sets, sug-
gesting that when a full TMD uncertainty breakdown is
available, the data will be able to constrain the models.

These measurements bridge the kinematic gap between
DIS measurements from fixed target experiments and
Drell-Yan measurements at hadron colliders, and may
provide a test of TMD factorization, TMD evolution,
and TMD universality. These measurements complement
previous and ongoing studies of TMD physics in hadronic
collisions [144-149] and provide a baseline for jet studies
in DIS of polarized protons and nuclei at the future Electron
Ion Collider [150,151].

This measurement also represents a milestone in the
use of ML techniques for experimental physics, as it
provides the first example of ML-assisted unfolding,
which is based on the recently proposed MULTIFOLD
method [65] and enables simultaneous and unbinned
unfolding in high dimensions. This opens up the possibility
for high dimensional explorations of nucleon structure with
H1 data and beyond.
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