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Disentangling the Regge Cut and Regge Pole in Perturbative QCD
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The high-energy limit of gauge-theory amplitudes features both a Regge pole and Regge cuts. We show
how to disentangle these, and hence how to determine the Regge trajectory beyond two loops. While the
nonplanar part of multiple Reggeon 7-channel exchange forms a Regge cut, the planar part contributes to
the pole along with the single Reggeon. With this, we find that the infrared singularities of the trajectory are
given by the cusp anomalous dimension. By matching to recent QCD results, we determine the quark and
gluon impact factors to two loops and the Regge trajectory to three loops.
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The high-energy behavior of QCD scattering amplitudes
has long been a source of inspiration and unique insight into
the gauge dynamics [1-4]. Specifically, gluon Reggeization
and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation
[5-8] connect between fixed-order computations of partonic
scattering and Regge theory [9-14], where the high-energy
asymptotic behavior of amplitudes is described in terms of
its singularities in the complex angular momentum plane.

Considera?2 — 2 scattering amplitude M,;_,;; of massless
partons, i(p1) + j(p2) = j(p3) + i(py4), described in terms
of Mandelstam variables s = (p, + p,)?, t=(p; — p4)?, and
u=(p, — p3)? = —s — t, in the high-energy limit, s > —.
At the leading-logarithmic (LL) approximation, rapidity
logarithms, log[s/(—1)], appearing in the one-loop amplitude
simply exponentiate as [s/(—t)]“%, forming a Regge pole.
This can be seen as due to the t-channel exchange of a single
Reggeized gluon, or single Reggeon (SR) [15]. The exponent
() =+
t)/x and in d = 4 — 2¢ dimensions,

is the leading-order gluon Regge trajectory, a,
O(a?) with a = a,(—

2(1-e)l'(1+¢)
r-2e (m)

n _ I,
ag):£,

rpr = e

The color structure of the LL amplitude remains the same as

at tree level, a pure octet exchange in the ¢ channel. Beyond
LLs other color states contribute where multiple Reggeon
(MR) #-channel exchanges take place.
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At higher logarithmic accuracy, it is useful to split the
amplitude into definite s <> u signature components:

- A (+)
Mijmij = ML+ M2 (2)

Further defining a signature-symmetric logarithm

=) -5 =) (G o

and expanding the amplitude as

M, = Z ZLMMJJZ,"’ : (4)

n=

one can show [16] that the coefficients of the odd (even)
M,
Moreover, ./\/lf;)l ;
t-channel exchange of an odd number of Reggeons, while
M

1j—1j°
leading logarithmic (NLL) accuracy the odd amplitude is
still governed by a SR [17-19], which is proportional to the

tree amplitude M, = = g3(2s/1)T; - T; and factorizes as

amplitude, are purely real (imaginary).

only receives contributions from

an even number. Consequently, at the next-to-

MTISR

ij—ij Ci(t)cj(t) (CA L pqtree (5)

l]—)lj’

where the impact factors C;;;(t) =1+ Cg}ja + -

ciated with the parton i/ j, need to be computed to one loop,
while the gluon Regge trajectory must be computed to

two loops, ag(t):aél)a+a§2)a2+(9(a3). From the
Regge-theory perspective Eq. (5) manifests a pure

asso-
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Regge pole. The signature-even amplitude is instead
governed by the exchange of a pair of Reggeized gluons,
which forms a Regge cut [7,8,20-22].

A significant increase in complexity arises upon con-
sidering the odd amplitude at the next-to-next-to-leading
logarithmic (NNLL) approximation, which features both a
Regge pole and a Regge cut [15,16,23-31]. Since the high-
energy analytic properties are only manifest upon resum-
ming the entire perturbative series, it is not at all obvious
how to disentangle the Regge pole from the Regge cut in an
order-by-order computation. This Letter presents a solution
to this fundamental question.

Key to this progress is the possibility to directly compute
the contributions to the scattering amplitude from the
t-channel MR exchange. Specifically, the NNLL tower
of MR corrections is governed by triple Reggeon exchange
and its mixing with a single Reggeon [16,27-31] and there
is now an established method [16,30,31], based on the
shockwave formalism [20], to evaluate these contributions
through an iterative solution of the Balitsky—Jalilian-
Marian-lancu-McLerran-Weigert-Leonidov-Kovner rapid-
ity evolution equation [32-36]. The entire tower of
NNLL corrections only requires the leading-order evolu-
tion kernel, thus yielding a universal result for all gauge
theories [30,31]. The result takes the form of generalized
ladder diagrams (Figs. 1 and 2) giving rise to 2 —2¢
dimensional integrals over transverse momenta with purely
gluonic color structures. Explicit computations in this
framework have been recently performed through four
loops, providing essential input for the present Letter.

The color structure arising from MR exchange is rather
complex. When considered for specific color representa-
tions of the scattered partons, the 7-channel color flow of
Ml(]_l%R involves the full set of representations compatible
with the odd signature. Besides the octet, this includes
the decuplet for gluon-gluon scattering and the singlet
for quark-quark scattering. Rather than projecting the
amplitude into color representations, we use a basis of
operators corresponding to color flow through the three
channels [37-39]:

TS:T1+T2, TM:T1+T3, Tt:T1+T4,
(6)
P P o) ] P ol
o) o) b 2 2 ]
o) 2 5 2 2 o)
- VU U YU 1 2 > VU U W 3 e
5 0 0 3 3 0
o} o} o} 5 o) 2]
) D 5 (Y ) =3
] 0 b S
5 5 2 2 2 2
D D 3 . 2 D D
J J
(@ (b)
FIG. 1. Four-loop ladder dlagrams contributing to the three-

Reggeon transition amplitude A3_,2 in Eq. (9).

where T, corresponds to the color generator associated
with the parton k. The MR contribution can then be
expressed [30,31] in terms of commutators of the operators
T; and T, =1(T?-T2) along with quadratic and
quartic Casimirs in the representation of the scattered
partons and in the adjoint representation. This basis allows
for a general treatment of high-energy 2 — 2 scattering in
any representation through NNLL, making signature sym-
metry manifest. It also provides a transparent separation
between planar and nonplanar color factors, as commuta-
tors of T? and T2_, are nonplanar [31].

The tower of NNLL MR contributions to the amplitude
is most naturally expressed in terms of the reduced
amplitude [16,30,31], via

(=M _ a, T
M,H,J = Z,Z ;e LMW , (7)
where
1 [#*dp? —t
Z,(t) = exp {_El) A—Qri< 5(4%). /12>} (8)

with the anomalous dimension

—t —t
r (). 5 ) = 150 ()] 0w 7 + 2l ()]
where ;" and y, are, respectively, the cusp [40-47] and
the colhnear anomalous dimensions of parton i [46-51].
The reduced NNLL amplitude takes the form [30,31]

l]—’lj _”ZZ arr)" (=L {Agn—)ﬁ

n>2
+0(n 23)(A"; +AY)

Lo 4>A§lgﬁ1} ©)

where © is a Heaviside function, and Aﬁ:)_)k corresponds
to an n-loop transition amplitude describing the emission of
m Reggeons from the projectile i followed by absorption
of k Reggeons by the target j. The tower of NNLL
corrections to the odd amplitude is the first instance where
transitions between states consisting of a different number

(b)

FIG. 2. Four-loop MR transitions involving triple and single
Reggeon mixing, Agﬂl and A(l—»3—>1 in Eq. 9).
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of Reggeons occur [16] and Refs. [30,31] gained insight
into their characteristics. All transition amplitudes in
Eq. (9) are universal for all SU(N,) gauge theories and
at n loops they feature uniform transcendental weight n
(considering 1/€ as having weight 1). A salient feature is
the cancellation of planar corrections. Partial cancellation

of these starts at three loops, where the terms 1¢\<3"_>>1 and

A(I"_>)3, which are proportional to the quartic Casimirs in the i
and j representations, respectively, completely cancel
against similar contributions in Ag’z3. An additional can-

cellation kicks in at four loops, where the A(1n—)>3—>1 transition

first appears [Fig. 2(b)], upon which no planar contribu-
tions survive. Explicitly shown at four loops [31], this
complete cancellation conjecturally extends to all higher
orders, n > 4: planar corrections are only present in

/\A/l,(;ll\l/jR at two and three loops, before all transition-
amplitude channels open up.

A crucial observation is that while the Regge cut arises
exclusively due to MR contributions to the amplitude,
MR exchanges do contribute also to the Regge pole. The
latter statement becomes evident in the large-N,. limit,
where it is known that the amplitude only features a
Regge pole [12,13], and yet, MR contributions are present
57-16,52]]. It is also known that Regge cuts only arise due
to nonplanar diagrams [11,13]. This strongly suggests
that the Regge cut should be identified as the nonplanar
part of the MR contribution, while the Regge pole
corresponds to SR plus the planar MR contributions.
We will show that the properties of the computed MR
contributions precisely match this conclusion. Indeed,
while the nonplanar part of the MR contribution involves
different color-flow components, depending on the nature
of the scattered partons; its planar part, present at two and
three loops, is restricted to the octet #-channel exchange,
it is entirely independent of the scattered partons, and
thus naturally forms part of the Regge pole, along with
the SR contribution:

) SR LR
Mz]—”J sz—>lj + MU-’U planar =i nonplanar
- (—)pole cut
= M -I-Mu—»u (10)

This separation of the amplitude will be referred to as the
cut scheme. At NNLL accuracy, the pole contribution is
uniquely fixed by the impact factors through two loops
and the gluon Regge trajectory at three loops. Thus, the
inherent nonplanar nature of the NNLL MR contribution
at four loops (and above) is essential.

The nonplanar part of the NNLL MR contribution to the
amplitude, which constitutes the Regge cut in Eq. (10), has
the following expansion coefficients [31]:

C2
,2,0)cu ree
MEDN = 22 ()28 () [(Tz_,»z ]th,

1 3
with S(Z)(G) :——2+_€§3+2€24’4+O(€3)’ (11)
8¢~ 4 8
—.3.1)cu 3
M = =2 (50O T,
+ ST T, )M
+ag TEMED (12)
with
3) 1 37 5
Sy () = Ty 3+ C3 —€C4+O(€ ), (13a)
(3) 1 5
Sp'(e) = YR Cg €C4+O(6 ). (13b)

and for n > 4

n—4
—.n,n=2)cu 1 1 M~ (= emn—r—
ML = (a3 ")
m=0
1 (1)2yn=3 4 4(=3,1)cut
T @ T M
n—3 1 n-2 —2.0)cul
“hoa (T3 2 MEEDN (14)

The planar part of the NNLL MR contribution in Eq. (10) is

(—)MR
Mij_)ij ’planar
2.2 .2p72
ma’riN;
O e {50

—anNL 3500 =55 @) 557 )| |19

with S giveninEq. (11)and 8% and 5% in Eq. (13). Terms
of O(a) in Eq. (15) vanish identically. Importantly, the result
in Eq. (15) is proportional to the tree amplitude and is entirely
independent of the scattered partons. Hence, using it in
Eq. (10) along with the SR contribution of Eq. (5), the
complete Regge-pole contribution factorizes as

ML = S (et Mz, (16)

lj—’lj’

and one can deduce the relation between the two-loop impact-
factor coefficients in Eq. (16) and those in Eq. (5),

2

Z 5@(e), (17)

~2) (2) 2
C. =C.:~+N:
(re)? 12

i/j i/
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and similarly for the three-loop Regge trajectory,
2
~(3 3 3 3
)=o) - pwe (00 - 50 @). (9

The coefficients C< and ag were determined in Ref. [16]

from fixed-order calculatlons that had been available then.
Here we shall use the cut scheme instead, and match it against
state-of-the-art computations in QCD.

At this point we have fixed the definition of all
parameters entering the Regge-pole term in Eq. (10)
through NNLL. Since we expect this pole-cut separation
to capture all-order analytic properties, it is interesting to
examine the ensuing infrared singularity structure of the
separate pole and cut terms. To this end let us define

wdp? cus
_FA P[ ?(’12)]

pe (19)

Ca, (1) = Cait,(t) + EA

This definition is motivated by the insightful observation
[58,59] that the singularities of the gluon Regge trajectory
are prescribed by the cusp anomalous dimension in the
adjoint representation, such that C 5g(t) is finite. So far this
has only been known to hold through two loops. We shall
verify that it holds in the cut scheme at three loops. It
remains a conjecture beyond this order.

One can write the Regge-pole term in terms of an s <> u
symmetric sum of exponentials [60] rather than a single
exponential of a symmetric logarithm. When this is done,
one may define a collinear-subtracted impact factor D;(t),
which is finite [26,31]:

Ci(t) = Z,(t)D;(t) [ cos (T[CA?%@), (20)

where Z;(1) is given in Eq. (8). We can then write an elegant
expression for the odd amplitude at NNLL accuracy as
follows:

|

Z;(1)Di(1)Z;(1)D;(1)

(
CAaJ _ CAa,/ .
X[ =) G e

(o]
2 (£,n,n=2)cut
—|—E a'L"2 M ,

ij—ij
n=2

l]—)l]

(1)

where the second term, representing the Regge cut, is

(£,n,n=2)cut . :
nonplanar, and its coefficients M! it U are given in

Egs. (11) and (12) for n = 2, 3, and i 1n Eq (14) for n > 4.
The four-loop reduced amplitude ME entermg Eq. (14)
is given in Eq. (5.32) in Ref. [31], while higher orders have
not yet been computed.

Equation (21) displays a transparent infrared-singularity
structure: in the pole term such singularities are fully
captured by the Z;,; factors and the divergences of the
trajectory given by the integral over the cusp anomalous
dimension in Eq. (19). Additional singularities are present
in the cut term, but we note [see Egs. (11) and (12)] that
these do not feature any single 1/¢ pole at two and three
loops, in line with the properties of the soft anomalous
dimension [16,30,31,61,62]. A 1/e¢ pole does occur at
O(atL?), which constitutes the first contribution to the soft
anomalous dimension from the NNLL tower [30,31].

Having established the separation between the Regge cut
and pole terms, we now compare our results to state-of-the-
art two- [63] and three-loop [64] computations in QCD to
extract the two-loop impact-factor coefficients for quarks
and gluons to O(e?) and the two- and three-loop Regge
trajectory coefficients to O(e?) and O(e°), respectively. We
performed the color algebra with [65] and the required
analytic Continuations using Refs. [66,67]. In line with
Eq. (1), we get ag = (1/2¢)(rr = 1).

We extract the two-loop Regge trajectory to O(e?) by
expanding Eq. (21) for gg — gg to two loops and compar-
ing it to the high-energy limit of the corresponding QCD
amplitude computed in Ref. [63], obtaining

s _ o (101 G5\ _Tny 607 _67¢, _33¢s_3C4 _ A58 3G
- =Ca <108 8) 54 6|34 ae "8 Tu6) T T2 T2 T
Ol 101¢, 11395 2321, 41¢s 71, 76, 85¢; 2118, 122 X
[CA<243 08 108 384 T8 T o )T satss too )| PO (22)

Here, the terms of O(e”) agree with the literature [23,68-71]
and higher orders in ¢ are new results. Upon taking the
planar limit, these agree with the recent calculation in
Ref. [72]. We also verified that Eq. (22) agrees with the
gluon Regge trajectory extracted by comparing the expan-
sion of Eq. (21) for quark-quark scattering with the high-
energy limit of the corresponding amplitude in Ref. [63].

|
Furthermore, from the same comparison we determine the
quark and gluon impact factors, C,(t) and C,() to two
loops through O(e?). These are conveniently expressed in
terms of the corresponding collinear-subtracted impact
factors D;(t) defined in Eq. (20), which we expand as
Di()=1+ab" + 2D + ..
factors are

-. The one-loop impact
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67\ | 5
_ 3¢ ¢ 5
bl =c, (72 42> +Cr (f—z) 36"+ Oe). (23)

while the two-loop ones are

o (335, 11 26675 49 25 55 &4\ 25,
P =c2 ey - c = c ) _ 22 ,

g (288€ ARTIE g4 10368) T\ Tos 124 T 36 0a) +Cony 19274 ) "2502"1 O
o (130 43 53434 13195 56, 4750y 650, 18229\ |, (21& 15¢ 83¢, 255
P — — _ _052 _ _

‘ CA( 32748 64 3456 ) T\ T s T3 Ti03es) TP\l T8 e i

56 7 385 619z, 25
Cany =222 -253 Comp (24223 420 4 22 . 24
+ *‘”f< 16 24 a32) T 3T Taas) Taea’ O (24)

Here we truncated the expansion at O(¢). Results for D,(.l>

through O(e*) and D) through O(e?) are provided in the

Supplemental Material [73], along with C ,(»”

€ and C’l@ through to O(e?). The results for ng) beyond

O(€%) are new. Upon taking the planar limit of C‘éz) we find

agreement with the recent calculation in Ref. [72]. One can
further check that in the supersymmetric limit, where
Cr =ny = Cy, the results for ¢ and €Y, coincide
for the terms of highest and next-to-highest transcendental
weight (weights 2n and 2n — 1, respectively), which is a
consequence of a supersymmetry Ward identity [74-78].
Furthermore, upon extracting the terms of highest weight,
one recovers the gluon impact factor in planar N' = 4 SYM
[79,80]. This result also coincides with the N' =4 SYM
gluon impact factor in full color [16,81], upon using the
cut scheme.

Finally, we determine the three-loop gluon Regge
trajectory, by comparing the expansion of Eq. (21) for
quark-quark scattering with the recent calculation of this
amplitude in QCD [64]. We find

to all orders in

40— 297029 799¢, 833¢5 77 _“ +55
v 03312 1296 216 192 | 24°%%3
e 1036, | 139¢; 5¢4 31313
AT\ 1296 T 144 96 46656
196, &, 1711 L[ 29 2
+Crny ( 72 7% 3456> "I\1458 " 27
+0(e), (25)

where O(e) corrections are yet unknown. Notably, for
ny =0 there are no 1 /N? corrections, in line with the
expected maximally non-Abelian nature of this quantity.
Equation (25) agrees with the recent calculation in the
planar limit [72].

|

Conclusions.—We have shown how to disentangle
Regge pole and cut contributions, making direct use of
the nonplanar origin of the cut. A key step is to recognize
that the planar part of MR exchanges contributes to the
Regge pole, leading to the separation of the amplitude
according to Eq. (10).

Essential to this progress is the availability of a method to
directly compute the MR contribution [16,30,31], in which
explicit calculations were recently pushed through to four
loops. This recent step has proven vital in uncovering the
inherent nonplanar nature of the NNLL reduced amplitude
beyond three loops. Having planar MR contributions at two
and three loops precisely matches the parameters available in
factorizing the Regge-pole contribution, Eq. (16), namely,
fixing the two-loop impact factors and the three-loop Regge
trajectory. If higher-order planar MR corrections were to
appear at four loops or beyond, this would have been in direct
conflict with the nonplanar nature of the Regge cut [11,13].

A natural question arises regarding the uniqueness of the
separation in Eq. (10) in as far as nonplanar corrections are
concerned. A distinct possibility exists at two loops to
absorb an additional O(1/N?) contribution, which depends
on the scattered partons, into the pole-term impact factors,
as previously proposed in Ref. [28] [see (5.47) in [31]].
Importantly, this has no impact on the Regge trajectory.
Moreover, the trajectory is expected to be maximally non-
Abelian, and hence it is uniquely fixed. Remarkably, we
find that the singularities of the trajectory are given by the
integral over the cusp anomalous dimension, consistently
with the proposition of Refs. [58,59].

Our procedure to separate the Regge pole and cut con-
tributions was immediately put to use with the recent
availability of complete three-loop calculations [64]. With
two-loop results to high order in € at hand for both quark and
gluon scattering [63], and three-loop results available for
quark scattering [64], we were able to fix the NNLL Regge-
pole parameters, providing a robust check of present and
future amplitude calculations. Further insight is obtained

132001-5
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upon comparing different gauge theories: the NNLL Regge-
cut contribution is entirely universal, while the Regge-pole
parameters depend on the underlying gauge theory and on the
scattered partons. Upon taking the supersymmetric limit of
the pole parameters and extracting terms of maximal weight,
one recovers the known N = 4 SYM results [16,79-81]. The
QCD impact factor and trajectory extracted here are of direct
relevance to the extension of the BFKL framework to NNLL
accuracy, as well as to the study of multileg amplitudes in a
variety of kinematic limits.
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