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Given current discrepancy in muon g − 2 and future dedicated efforts to measure muon electric dipole
moment (EDM) dμ, we assess the indirect constraints imposed on dμ by the EDMmeasurements performed
with heavy atoms and molecules. We notice that the dominant muon EDM effect arises via the muon-loop
induced “light-by-light” CP-odd amplitude ∝ BE3, and in the vicinity of a large nucleus the corresponding
parameter of expansion can be significant, eEnucl=m2

μ ∼ 0.04. We compute the dμ-induced Schiff moment

of the 199Hg nucleus, and the linear combination of de and semileptonic CS operator (dominant in this case)
that determine the CP-odd effects in the ThO molecule. The results, dμð199HgÞ < 6 × 10−20 e cm and

dμðThOÞ < 2 × 10−20 e cm, constitute approximately threefold and ninefold improvements over the limits
on dμ extracted from the Brookhaven National Laboratory muon beam experiment.
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Introduction.—The searches for electric dipole moment
(EDMs) of elementary particles have progressed a long
way since the first indirect limit on neutron EDM found by
Purcell and Ramsey seventy years ago [1]. Current pre-
cision improved by nearly 10 orders of magnitude since [1]
and nil results of the most precise measurements [2–5] have
served a death warrant to many models that seek to break
CP symmetry at the weak scale in a substantial way (see,
e.g., [6–9]).
EDMs of neutron and heavy atoms can also serve to

constrain EDMs of heavier particles that do not appear
inside these light objects “on-shell” [10]. While for the
EDMs (and color EDMs) of heavy quarks the gluon
mediation (and for heaviest objects such as t quark,
Higgs mediation) diagrams play a crucial role [11,12],
the EDMs of muons and τ leptons require three-loop α3EM
suppressed amplitudes to generate the electron EDM de via
radiative corrections [13]. In this Letter, we reevaluate the
muon EDM (dμ) induced CP-odd observables and find
the enhanced sensitivity to dμ in experiments that measure
EDMs of heavy atoms and molecules.
The latest interest to muons is fueled by the ongoing

discrepancy between theoretical predictions and experi-
mental measurement of the muon anomalous magnetic
moment [14–20]. It brings into focus a question of other

observables that involve muons, and one such important
quantity is the muon EDM, dμ (see, e.g., [21] on extended
discussion on this point). At the moment, the auxiliary
EDM measurement at the Brookhaven g − 2 experiment
sets the tightest bound on muon EDM [22],

jdμj < 1.8 × 10−19 e cm; ð1Þ

but there are proposals on significantly improving this
bound with dedicated muon beam experiments [23–26].
Given these upcoming efforts it is important to reevaluate
indirect bounds on muon EDM, especially given significant
progress in precision of atomic and molecular EDM
experiments in recent years.
In this Letter, we evaluate indirect limits on dμ finding

superior bounds to (1) from Hg and ThO EDM experiments
[2,4]. Our results draw heavily on the fact that the closed
muon loop with dμ insertion is placed in a very strong
electric field of a large nucleus (e.g., Hg or Th). The resulting
interaction, encapsulated by the E3B effective operator, is
capable of generating Schiff moment [27], CP-odd electron-
nucleus interaction [6], and magnetic quadrupole moment.
Below, we elaborate on details of our findings (see also [28]).
Muon EDM and E3B interaction.—The input into our

calculations is the muon EDM operator,

LCP-odd ¼ −
i
2
Fαβ × μ̄σαβγ5μ × dμ; ð2Þ

and for the purpose of this Letter we assume that the Wilson
coefficient dμ is the only source of CP violation.
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At one loop order, muons induce CP-odd nonlinear
electromagnetic interactions, much the same as the well-
studied “light-by-light” diagrams in the CP-even channel.
In Fig. 1 we show an example of such a diagram. We notice
that photon momenta entering the muon loop are small
compared to the muon mass mμ. Indeed, in a large nucleus,
qmax
γ ∼ R−1

N ∼ 30 MeV, one can truncate the series to the
lowest dimension operator, and assume electric E and
magnetic B fields to be uniform. Working in the lowest
order in dμ, we directly compute the corresponding
electromagnetic operators, similar to the dimension eight
term in the Euler-Heisenberg Lagrangian:

L ¼ −e4ðF̃αβFαβÞðFγδFγδÞ × dμ=e

96π2m3
μ

¼ −
dμ=e

12π2m3
μ
e4ðE ·BÞðE ·E −B · BÞ; ð3Þ

where F̃αβ ¼ 1
2
ϵαβμνFμν, and we define the gauge coupling

e to be positive. One can notice interesting differences
with the CP-even case: the dimension four ðF̃αβFαβÞ
operator can be dropped, and there is only one dimension
eight operator ðFFÞðFF̃Þ, while the CP-even case has two,
ðFFÞðFFÞ and ðFF̃ÞðFF̃Þ. The effective CP-odd photon
interactions were discussed recently in [31]. In principle,
all terms in the expansion can be computed analytically.
Neglecting the OðB3Þ interaction that is subdominant due
to no Z enhancement leaves only the E3B effective operator
that we write in a more generic form that can be applied to
other sources of CP violation as well:

Heff ¼ CE3B ×
Z

d3xe4ðE · EÞðE ·BÞ; ð4Þ

with CE3B ¼ ð12π2m3
μÞ−1dμ=e in our model (2).

It is important to note that the E3B effective interaction
does not always capture all relevant physics. For example,
the muon-loop-mediated electron EDM that arises at three
loop order involves computation with loop momenta that

can be comparable or even larger than mμ. In that case,
the entire CP-odd four-photon amplitude is needed [13].
In what follows we evaluate the physical consequences of
the E3B interaction.
Muon EDM and nuclear CP-odd observables.—Nuclear

spin dependent EDMs (sometimes called diamagnetic
EDMs) provide stringent tests of CP violation via probing
nuclear T, P-odd moments. At this step we address the
mechanisms that convert CP-even static nuclear moments
to the CP-odd ones,

μN;QN ⟶
E3B

dN; SN;MN; ð5Þ

where subscript N stands for “nuclear,” and μ, Q, d, S, M
are magnetic, electric quadrupole, electric dipole, Schiff,
and magnetic quadrupole moments. (Inside a neutral atom,
dN is not observable by itself, but in the linear combination
that parametrizes the difference between EDM and charge
distribution, the Schiff moment [27]).
Consider a spin-1

2
nucleus, as in the most sensitive

diamagnetic EDM experiment with 199Hg [2]. Then MN
is absent by definition, but dN and SN can be induced as
shown in Fig. 1. To calculate them we notice that the
magnetic field of the I ¼ 1=2 nucleus can be presented in
the following form:

eBiðrÞ ¼ b1ðrÞnIi þ b2ðrÞð3ninj − δijÞnIj; ð6Þ

where we introduced the unit vector in the direction of the
nuclear spin, nI ¼ I=I, n ¼ r=r and some scalar invariant
functions b1ð2ÞðrÞ. Notice that in the limit of a very small
nuclear radius, RN → 0, the corresponding asymptotics of
these functions are

b1ðrÞ →
2eμN
3

δðrÞ; b2ðrÞ →
eμN
4πr3

; ð7Þ

where μN is the nuclear magnetic dipole moment value.
The nuclear electric field, to good accuracy, can be
described by the radial ansatz,

eE ¼ n
r2

× ZαfðrÞ; ð8Þ

where Z is the atomic number, α is the fine structure
constant and fðrÞ is the fraction of nuclear charge
within the radius r. For the uniform sphere charge
distribution fðrÞ ¼ r3=R3

N for r < RN and fðrÞ ¼ 1 for
r > RN . Substituting (8) and (6) into (4) and performing
angular integration, we obtain intermediate expressions
for dN and SN :

dN
eCE3B

¼ 4πðZαÞ2
Z

dr
r2

f2
�
5

3
b1 þ

4

3
b2

�
; ð9Þ

FIG. 1. A representative light-by-light scattering diagram with
dμ insertion (indicated by the crossed dot) giving rise to E3B
interaction. When E2B is sourced by the nucleus, as shown on the
right, dN and SN are generated.
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SN
eCE3B

¼ 2πðZαÞ2
15

Z
drf2

�
b1

�
11 −

25

3

r2c
r2

�

þ b2

�
16 −

20

3

r2c
r2

��
: ð10Þ

In these expressions, r2c is the nuclear charge radius. We
follow the standard definition of the Schiff moment that
in nonrelativistic limit and pointlike nucleus leads to the
effective nuclear-spin-dependent T, P-odd Hamiltonian
for electrons

HT;P-odd ¼ −ðSN=eÞ × 4παðnI · ∇eÞδðreÞ: ð11Þ

Nuclear dependence in (9) and (10) is encapsulated in f
and bi. Electric field, i.e., f, is determined by the
collective properties of the nucleus and has little to no
dependence on the details of the nucleon’s wave function
inside a large nucleus. In contrast, the scalar functions bi
that describe magnetization are determined by mostly
“outside” valence nucleons and carry more detail about
nuclear structure. For any realistic choice of f and bi,
however, it is easy to see that radial integrals will be
saturated by distances r ∼ RN .
Specializing our calculations to the 199Hg nucleus,

we adopt a simple shell model description of it with a
valence neutron in nr ¼ 2, l ¼ 1, and j ¼ 1=2 state
carrying all angular momentum dependence, and ignore
configuration mixing. Its wave function can be conven-
iently written as

ψðrnÞ ¼ R2pðrnÞ
ðσn · nnÞffiffiffiffiffiffi

4π
p χ; ð12Þ

where rn ¼ nnrn and χ are the neutron’s coordinate and two
component spinor, and R2p is the radial wave function
normalized as

R
R2r2dr ¼ 1. Nuclear spin in this case

coincides with j, and nI ¼ χ†σnχ. The magnetic moment
of the nucleus has a simple connection to the magnetic
moment of the neutron, eμN ¼ ð−1=3Þeμn ¼ ð−1=3Þ×
ð−1.91Þ × 4πα=ð2mpÞ. The magnetization functions bi
defined earlier in (6) can be directly related to radial R2p

functions, and explicit calculations give

b1ðrÞ ¼
−1.91α
2mp

×
2

3

�
2

Z
∞

r

drn
rn

R2
2pðrnÞ − R2

2pðrÞ
�
;

b2ðrÞ ¼
−1.91α
2mp

×
1

3

�
R2
2pðrÞ −

1

r3

Z
r

0

drnr2nR2
2pðrnÞ

�
:

One can easily check that the corresponding boundary
conditions (7) are satisfied. To learn about the parametric
dependence of our answers we first explore the simplified
case when not only the charge distribution but also RðrÞ is
taken to be constant inside the nuclear radius and zero

outside,R2
2pðrÞ ¼ 3R−3

N θðRN − rÞ [7]. In this approximation
we get

dN
eCE3B

¼1.91×2πZ2α3

3mpR4
N

;
SN

eCE3B
¼1.91×39πZ2α3

245mpR2
N

; ð13Þ

and consequently SN scales as Z4=3 since RN ∝ Z1=3. In
order to get a more realistic answer, we solve for R2p

numerically using the Woods-Saxon potential with param-
eters outlined in Ref. [32]. We check that our results
reproduce SNðdnÞ [7,32] with reasonable ∝ 30% accuracy.
Performing two numerical integrals over rn and r, and
substituting explicit expression for CE3B, we obtain the
following numerical result,

S199Hg=e ≃ ðdμ=eÞ × 4.9 × 10−7 fm2; ð14Þ

that lands itself very close (within 20%) from the naive
estimate (13). Given the experimental constraint of jS199Hgj <
3.1 × 10−13 e fm3 [2], we arrive at the following final result

jdμj < 6.4 × 10−20 e cm; ð15Þ

which is somewhat more stringent bound, by a factor
of ∼2.5 than (1). Result (14) carries a 25%–30% uncertainty
due to neglected contributions from the nuclear orbital
mixing.
Future developments may bring about new experiments

that would search for EDMs involving nuclei with I ≥ 1
[33], opening the possibility of measuring magnetic quad-
rupole moments, and using nuclei with large deformations
and large QN . We perform a simple estimate for the
expected size of the magnetic quadrupole by taking the
electric field created byQN outside the nucleus, and cutting
divergent integrals at RN . This way, we arrive at the
following estimate

MN

eCE3B
∼
48πZ2α3

5

QN

e

Z
dr
r5

≃
QN

e
12πZ2α3

5R4
N

: ð16Þ

Substituting expression (4), and normalizing electric quad-
rupole on large values observed in deformed nuclei, we get

MN

e
∼ 10−4 fm ×

QN

e300 fm2
× ðdμ=eÞ: ð17Þ

Taking typical matrix elements and extrapolating future
sensitivity to the current one of the ThO experiment, one
could probe MN=e ∝ 10−11 fm2 and consequently achiev-
ing dμ=e ∝ 10−20 e cm.
Muon EDM and paramagnetic CP-odd observables.—

Finally we turn our attention to the electron-spin-dependent
EDMs referred to as paramagnetic EDMs of atoms
and molecules. These experiments probe the electron
EDM operator [defined through Eq. (2) with μ → e] and
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semileptonic CP-odd operators among which the most
important one is CS,

LeN ¼ CS
GFffiffiffi
2

p ðēiγ5eÞðp̄pþ n̄nÞ: ð18Þ

For nonrelativistic electrons and a small RN limit, this
term gives rise to ∝ ðσe · ∇eÞδðreÞ effective interaction. The
importance of CS for probing CP violation in the Higgs
sector, quark sector etc has been emphasized many times in
the literature, see, e.g., [34–37]. Tremendous progress of
the past decade with limits on de and CS has been achieved
by the ACME Collaboration in experiment with the ThO
paramagnetic molecule [4]. Since the results are often
reported in terms of de, it is convenient to introduce a linear
combination of the two quantities limited in experiment and
refer to them as “equivalent de” [38,39]:

dequive ¼ de þ CS × 1.5 × 10−20 e cm: ð19Þ

Current experimental limit stands as jdequive j <
1.1 × 10−29 e cm [4].
Muon EDM contributes both to de andCS through loops.

The bona fide three-loop deðdμÞ computation, Fig. 2, was
performed in [13],

de ¼ dμ

�
α

π

�
3 me

mμ
× 1.92 ≃ 1.1 × 10−10dμ: ð20Þ

If the direct bound (1) is saturated, de will be larger than the
experimental limit by about a factor of 2, as already noted
in Ref. [21]. It turns out, however, that equivalent of CS

generated by E3B interaction gives a larger contribution.
A representative diagram contributing to the T, P-odd

electron-nucleus interaction via E3B term is shown in
Fig. 2. The two electric field lines can be sourced by a
nucleon, or a nucleus, while the photon loop attached to the
electron line generates ameēiγ5e interaction. There are two
important considerations regarding this type of contribu-
tion: (i) The photon loop is enhanced by logðΛ=meÞ, and
we calculate this loop to logarithmic accuracy, cutting it at
Λ ¼ mμ. (In practice, this cutoff will be supplied by the
nonlocal nature of the muon loop in Fig. 1.) (ii) In a large
nucleus E2 is coherently enhanced and dominates over

effects proportional to electromagnetic contribution of
individual nucleons ∝ ZhpjE2jpi. Being concentrated
inside and near the nucleus, E2 can be considered equiv-
alent to the delta-functional contribution:

e2ðE2Þnucl → δðrÞ × 4πðZαÞ2
RN

×
Z

∞

0

f2ðRNxÞ
x2

dx; ð21Þ

where x ¼ r=RN . For a constant density charge distribu-
tion, the integral in (21) is 6=5, and we adopt this number.
Putting the results of the loop calculation together with
(21), and using the explicit form for CE3B we arrive at the
following prediction for the equivalent CS value:

GFffiffiffi
2

p Cequiv
S ¼ κ

4Z2α4

πA
×
meðdμ=eÞ
m3

μRN
× log

�
mμ

me

�
: ð22Þ

As one can see, Cequiv
S scales as Z2A−1R−1

N ∝ Z2=3, which is
the sign of coherent enhancement. A is the number of
nucleons, and A ¼ 232 for Th. In this expression, κ is a
fudge factor to account for the change of the electronic
matrix elements stemming from the fact that nuclear E2

extends beyond the nuclear boundary, while true nucleonic
CS effect is proportional to nuclear density and vanishes
outside. Solving the Dirac equation near the nucleus for the
outside s1=2 and p1=2 electron wave functions and finding a
ratio of the matrix elements for these two distributions
result in κ ≃ 0.66. We then arrive to the numerical result

Cequiv
S ¼ 3.1 × 10−10

�
dμ

10−20 e cm

�
: ð23Þ

Combining (23) with (20) into (19), we arrive at our
main result

dequive ≃ 5.8 × 10−10dμ ⇒ jdμj < 1.9 × 10−20 e cm: ð24Þ

We observe that de and Cequiv
S interfere constructively, and

CS contribution is larger by a factor of ≃4. We believe (23)
to be accurate within ∼15%–20% with uncertainties asso-
ciated with modeling of EðrÞ and logarithmic approxima-
tion for the photon loop integral.
Outlook.—We have evaluated the electromagnetic trans-

mission mechanisms of muon EDM to the observable
EDMs that do not involve on-shell muons. We have found
that muon-loop-induced E3B effective interaction plays an
important role and leads to novel indirect bounds, Eqs. (15)
and (24) that are already stronger than the direct bound (1).
Result (24) provides a new benchmark that future dedicated
muon EDM experiments would have to overtake. We also
notice that since both 199Hg and ThO EDM results give
an improvement, it is highly unlikely that a fine-tuned
choice of de and hadronic CP violation would lead to the
relaxation of indirect bounds on dμ.

FIG. 2. Three-loop contribution to de and two-loop contribu-
tion to equivalent CS generated by dμ.
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In this Letter, we do not discuss the short-distance physics
that may lead to the enhanced dμ. We note that while in some
models dμ is predicted at the same level as de, it is also
feasible that dμ=de scales as ðmμ=meÞ3 and possibly even
larger. (Given the ongoing g − 2 discrepancy in the muon
sector, it is clear that dμ deserves a separate treatment.) Still,
it is instructive to equate dμ to some simple scaling formula
that involves an ultraviolet scale Λμ, and we choose dμ ¼
mμ=Λ2

μ scaling. Then our results translate to

Λμ > 300 GeV; ð25Þ

which underscores that the ðweak scaleÞ−1 distances start
being probed. Depending on underlying model, there can be
some scale dependence of the muon EDM form factor
dμðQ2Þ (see, e.g., [13]). This, however, does not obscure
comparison of direct (Q2 ≃ 0) and indirect (Q2 ≃m2

μ) limits
derived in our Letter as long as the dμ operator is generated at
distances Λ−1 ≪ m−1

μ .
We also update the limit on the τ-lepton EDM dτ derived

in [13]. Our analysis is directly applicable to dτ after
replacing mμ by the τ-lepton mass mτ. In this case, the
electron EDM plays the dominant role since de ∝ m−1

τ

while SN; CS ∝ m−3
τ up to logarithm. For the ThO mol-

ecule, we obtain

dequive ≃ 7.0 × 10−12dτ ⇒ jdτj < 1.6 × 10−18 e cm: ð26Þ

This surpasses the constraint from the Belle experiment
[40]. The constraint from 199Hg is weaker by a factor of
∼2 × 102 than (26).
Finally, while the focus of our Letter was on dμ, one

could also derive limits on CE3B applicable to other models.
We get constraints on CE3B at the level of 10−41 eV−4 and
better, which would be challenging to match with photon-
based experiments [31].
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