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We consider the effective field theory of gravity around black holes, and show that the coefficients of the
dimension-8 operators are tightly constrained by causality considerations. Those constraints are consistent
with—but tighter than—previously derived causality and positivity bounds and imply that the effects of
one of the dimension-8 operators by itself cannot be observable while remaining consistent with causality.
We then establish in which regime one can expect the generic dimension-8 and lower order operators to be
potentially observable while preserving causality, providing a theoretical prior for future observations. We
highlight the importance of “infrared causality” and show that the requirement of “asymptotic causality” or
net (sub)luminality would fail to properly diagnose violations of causality.
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Introduction.—General relativity (GR) should be
thought as the leading order term in an effective field
theory (EFT) that includes an infinite number of higher-
dimension operators [1–5]. If we are interested in gravity
below some energy scale Λ, we may integrate out all
particles with masses above that scale. Assuming a tree
level weakly coupled completion, such as a string theory,
the effective action is

LEFT ¼ M2
Pl

2

�
Rþ LD4

Λ2
þ LD6

Λ4
þ LD8

Λ6
þ � � �

�
; ð1Þ

where LDn denotes a linear combination of all possible
dimension-n operators built out of the Riemann (or Weyl)
curvature and its covariant derivatives, see Supplemental
Material (SM) [6]. The higher-dimension operators capture
the effects of the heavy fields that have been integrated out
at tree level, i.e., particles of spin ≥ 2. One would expect
the scale Λ to be the mass of the lightest higher spin state
(s ≥ 2). Motivated by the recent detections of gravitati-
onal waves (GWs), there has been a surge of interest in
establishing whether these operators could be probed
assuming a very low Λ. Such operators could indicate
the presence of new physics beyond the standard model and
potentially connect us with the dark sector. A formalism for
probing those operators with inspiraling GWs was pro-
posed in Ref. [7]. Finite size effects of black holes (BHs)
have also been investigated in the presence of dimension-8
operators [8] and dimension-6 operators [9,21]. Interes-
tingly, LIGO and Virgo constraints on the dimension-8
operators were explored in Ref. [10]. For related works see
Refs. [11,12,23,24].
While we may be on the edge of constraining gra-

vitational EFTs using GW observations, theoretical con-
siderations also have significant impact. For instance,

requiring the low-energy EFTs to be embeddable in a
local Wilsonian, unitary, Lorentz invariant and causal high
energy completion like string theory imposes a set of
positivity constraints on these EFTs [25,26]. In parallel, it is
well known that in gravitational EFTs, the sound speed can
appear to be superluminal [9,27–36], and by demanding the
local group velocity of GWs to be (sub)luminal, it was
shown in Ref. [37] that the coefficients of the dimension-8
operators ought to be sign definite. In this Letter, we shall
complement the state of the art by further investigating the
constraints set by causality. Our requirements for pre-
serving causality are similar to the ones indicated in
Refs. [13,14,38] but differ from the notion of “asymptotic
causality” or net (sub)luminality which is sometimes
postulated in the literature. As we shall see, the asymptotic
causality condition, while necessary is not sufficient for
preserving causality and fails to identify situations which
are known to be in tension with causality as inferred for
instance from positivity bounds.
GWs in dimension-8 EFT.—Motivated by the findings of

Ref. [10] we shall start with the following dimension-8
operator,

Sð1ÞD8 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
Pl

2

�
Rþ c1

Λ6
ðRabcdRabcdÞ2

�
; ð2Þ

with c1 ¼ �1. Considering a BH of mass M, the metric
slightly deviates from the Schwarzschild one with a
magnitude proportional to the dimensionless parameter
μ ¼ ðGMΛÞ−6, where G ¼ 1=ð8πM2

PlÞ is Newton’s con-
stant, see SM for details [6].
GWs can be decomposed into odd and even parity

metric perturbations h�μν propagating independently on
the Schwarzschild-like background. Expressed in spherical
harmonics with multipole l, the radial dependence of each
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mode can be captured by the master variables Ψ�
ωlðrÞ,

where ω denotes the frequency. Including the dimension-8
operators perturbatively, the master variable satisfies the
modified Regge-Wheeler-Zerilli equation [8,39]

d2Ψ�
ωl

dr2�
¼ −½ω2 − V�

GRðr;lÞ − c1μV�ðr;l;ωÞ�Ψ�
ωl; ð3Þ

where r� is the tortoise coordinate, V�
GR are the GR

potentials, and V� the leading-order EFT correction (see
SM for the technical details [6]). Parity ensures that both
modes decouple and we shall omit the � indices unless
relevant.
For the EFT to remain valid when scattering GWs on a

BH, the Riemann curvature ought to be small as compared
to the cutoff at the impact parameter rb ¼ ðlþ 1=2Þ=ω,
meaning rbΛ ≫ 1 and GM=r3b ≪ Λ2. Moreover, we also
require that the description of the GWs is under control as
discussed in Refs. [13,14] (see SM [6]), meaning that their
asymptotic energy ω should be bounded by

ω ≪ Λ2rb: ð4Þ

With this in mind, the background is then automatically
under control if μ≲ 1 and rb > GM.
Scattering phase shift and time delay.—When consid-

ering the scattering of GWs on a Schwarzschild-like BH in
model (2), the EFT corrections manifest themselves in the
scattering phase shift and time delay, which can be inferred
from solving Eq. (3) in the Wentzel-Kramers-Brillouin
(WKB) approximation. For practical reasons, we shall
focus on GWs with ω2 < maxðjVGRjÞ, in which case the
desired WKB solution is the one that decays exponentially
at the horizon (tortoise coordinate r� → −∞). At infinity,
the corresponding solution asymptotes to [13],

Ψl ∝ e2iδleiωr� − ð−1Þle−iωr� ; ð5Þ

with the phase shift

δl ¼
Z

∞

rT�
dr�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − VGR − c1μV

q
− ωÞ

− ωrT� þ π

2

�
lþ 1

2

�
; ð6Þ

where rT� is the turning point defined by ω2 − VGR−
c1μV ¼ 0. The scattering time delay is then given in terms
of the phase shift by Tl ¼ 2∂δlðωÞ=∂ω. As compared to
the GR answer TGR

l , the total time delay Tl acquires an
additional EFT contribution δTl,

Tl ¼ TGR
l þ δTl þOðμ2Þ: ð7Þ

Writing δTl ¼ c1μδtl, Fig. 1 shows δt�l as a function of ω
for various values of l (see SM [6]). Interestingly, δt−l and
δtþl always have an opposite sign, so that there is always a
time advance for one of the GW polarizations for any
choice of c1 ¼ �1.
Infrared causality.—As has been established for QED

[38] and for other gravitational theories [13], a time
advance compared to GR, i.e., δTl < 0, does not neces-
sarily indicate acausality. It violates causality only if the
time advance, calculable within the validity regime of the
EFT, is resolvable. For causality to be respected, the front
velocity should be luminal, meaning that the infinite
frequency limit of the phase velocity should be luminal
as dictated by the geometry seen by those high-frequency
modes. As unitarity and analyticity (derived from causality)
dictate that the phase velocity cannot decrease with
frequency, this implies that low-frequency modes should
necessarily be subluminal with respect to the local back-
ground geometry. Indeed, the equivalence principle implies
that the high-frequency modes can only be sensitive to the
local inertial frame, so causality is fixed by the background
geometry seen by the high-frequency modes. At the level of
a low-energy EFT, causality therefore demands that low-
energy modes be (sub)luminal as compared to the back-
ground geometry, which in terms of observables requires
that any support outside the light cone determined by the
geometry be unresolvable, see [14] for more details.
In other words, the statement of “infrared causality” is
violated if

−δTl ≳ 1=ω ðinfrared acausalityÞ: ð8Þ

Note that infrared acausality necessarily implies the
absence of a standard and causal high energy completion,
however, respecting infrared causality does not necessarily
guarantee the presence of a consistent UV embedding, it
only is a necessary condition. Translating this back into
the parameters of the model (2), we infer that a wave with
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FIG. 1. EFT corrections on the scattering time delay of the odd
(blue) and even (orange) modes in the dimension-8 EFT (2).
From light to dark, the curves show ωδtl with l ¼ 2, 22, 42, 62,
and 82. The EFT contribution to the time delay is given by
δTl ¼ c1μδtl, so the odd modes enjoy a time advance when
c1 ¼ 1, and the even ones when c1 ¼ −1.
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frequency ω and multipole l scattered about a BH of mass
M in the EFT (2) violates causality whenever

1

−c1ωδtl
≲ μ ≪

�
lþ 1=2
ω2G2M2

�
3

: ð9Þ

Introducing the parameter γ defined as ω2 ¼ γVmax, with
Vmax being the maximum of VGR ∼ l2ðGMÞ−2, the con-
dition (9) only depends on the BHmass via μ. Naturally, the
effect of the dimension-8 operator increases with ω as
illustrated in Fig. 1, however ω should be smaller than Vmax
for the phase shift to be well approximated by (6) [40]. For
these reasons, we consider γ ¼ 0.9, so thatω ∝ l at large l,
and the impact parameter is constant. We compute the
condition (9) numerically and present the results in Fig. 2
which indicate that the EFT (2) violates causality in the odd
sector if c1 ¼ þ1 and μ≳ 0.04.
Crucially we see that if c1 ¼ −1, the even sector always

violates the notion of infrared causality. In that case, the
even modes lead to a time advance with δtþl increasing
quadratically with the multipole l, while ω increases
linearly as l → ∞. Therefore, both sides of the inequality
(9) decrease as l−3 at large l. Explicit calculation shows
that the left hand side of the inequality (9) is smaller than its
right hand side (cf. Fig. 2). This implies that no matter how
small μ is, for sufficiently large l the time advance will
always be resolvable when c1 ¼ −1, hence violates cau-
sality [41].
The main implication of our findings is that the EFT

defined in (2) can only ever be causal if c1 ¼ 1 and if
ðGMΛÞ−6 ≲ 0.04 for any BH. Given that the smallest
known BH has 3 M⊙ [42–44], the causality constraint
translates into a lower bound on the cutoff scale enforcing
Λ≳ 7 × 10−11 eV. Within the current state of the art, the
EFT (2) with a cutoff of order Λ ∼ 10−13 eV was shown to
lead to observable effects [10]. While such a low cutoff can
lead to a potentially interesting phenomenology, it also
comes hand in hand with violations of causality. We can
push those bounds further by considering BHs with

arbitrarily small mass, which would lead to a constraint
on c1=Λ6 to be arbitrarily small. In particular, BHs with
radii as small as the fundamental scale of quantum gravity
Mfund would force the scale Λ to be associated to that scale
Λ ∼Mfund in the case where no other dimension-6 and
dimension-8 operators are considered.
Our conclusion on the sign of the coefficient of the

dimension-8 operator is entirely consistent with expect-
ations on the low-energy operators derived in type II string
theory [15] after compactification [16]. It also has been
shown that the sign of c1 can be fixed by demanding the
local group velocity of high-frequency GWs to be (sub)
luminal [37]. The dimension-8 operator c1ðRabcdRabcdÞ2 is,
in spirit, the gravitational analog of the cð∂ϕÞ4 operator that
enters generic Goldstone EFTs. In that case the existence of
a standard Wilsonian completion, manifests itself via
positivity bounds, which have been shown to be directly
linked with the sign of the coefficient c [45–47]. Within the
low-energy EFT, the sign of coefficient c is also directly
linked to resolvability of time advances and hence to
causality [13]. Applying similar types of positivity bounds
to gravitational EFTs have been shown to impose c1 > 0
[25,26]. Not only are our conclusions fully consistent with
those results, they also allow us to derive a lower bound of
the cutoff of the EFT considered in (2) when c1 ¼ 1.
Asymptotic causality.—The time delay TGR

l introduced
in Eq. (7), is the one perceived by the freely propagating
modes following null geodesics on that background. In this
sense, TGR

l represents what the high-energy modes (the
modes with energy well above Λ and well below MPl) are
subject to on that very background. See, for instance,
Ref. [38] for an analog discussion in the case of QED.
On the other hand, δTl represents the additional time

delay of the low-energy modes on that same background,
arising from interactions with the heavy fields (whose
effects are precisely encapsulated by the inclusions of the
higher dimension operators). Since causality demands that
low-energy modes do not travel outside the light cone set
by the high-energy modes, what matters in setting causality
is the sign of δTl and not the net Tl. Only a time advance in
addition to the GR contribution, i.e., a negative δTl, would
signal that the retarded propagator has support outside the
light cone set by the high-energy modes [13,17,38,48–50].
Positivity of the net Tl, is referred to as asymptotic

causality, and violating it requires

−Tl ≳ 1=ω; ðasymptotic acausalityÞ; ð10Þ

leading to a different lower bound in the inequality (9),

ðTGR
l þ ω−1Þ
−c1δtl

< μ ≪
�
lþ 1=2
ω2G2M2

�
3

: ð11Þ

From Eq. (6), we see that TGR
l approaches to a constant at

large l, while δt−l ∼ l0 and δtþl ∼ l2, whereas the upper

FIG. 2. Parameter space (shaded gray) of causal violating time
advance in the dimension-8 EFT (2). μvalidity and μresolvability are
the upper and lower bound of μ in condition (9), and μnet is the
lower bound in condition (11).
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bound in the inequality (11) still scales as l−3. Therefore,
irrespective of the parameters of the EFT, sufficiently high
multipoles that remain within the regime of validity of the
EFT always enjoy a positive net time delay, as depicted in
Fig. 2. Comparing to the criteria used previously, the
statement of asymptotic causality while necessary is not
sufficient and by itself would always leads to much weaker
constraints on the EFT. For the EFT considered in (2),
the statement of asymptotic causality would allow for a
negative c1 ¼ −1 so long as μ < 10−7, i.e., so long as
Λ > 15=GM. Stated differently, around a BH of mass
M ¼ 3 M⊙, the net time delay remains positive for all
polarizations even if c1 ¼ −1 and Λ taken to be as low as
10−37MPl. Yet we know from positivity bounds that such a
situation would be in direct tension with causal and unitary
requirements. This illustrates how the statement of asymp-
totic causality fails to properly diagnose violations of
causality. These considerations further show how insisting
instead on an unresolvability of the EFT time advance is
precisely what is linked with causality considerations in
known situations.
Causality in the generic EFT of gravity.—We now

generalize the previous argument to more generic gravita-
tional EFTs, and show that the causal requirement c1 > 0 in
model (2) could have been drawn by focusing on the high
multipole limit. To keep the discussion general, we con-
sider the EFT corrections on the potential to scale as V ∼ ln

at large l, and extend the definition of μ to μ ¼ ðGMΛÞ−2m,
where n and m are integers determined by the leading
operators present in the EFT. Again, we write ω2 ¼ γVmax.
As l → ∞, Vmax → l2=27G2M2 and hence ω ∼ l.
Focusing on the scaling in l, the condition (9) reduces to

l−nþ1 < μ ≪ 27ml−m; for l ≫ 1; ð12Þ

where the lower bound is the resolvability condition, and
the upper bound ensures the EFT is under control.
From the condition (12) we see that a resolvable time

advance at infinitely large l can only be trusted when
n ≥ mþ 1. In this case, for any μ there exists a large
enough l, such that the resulting multipole would neces-
sarily violate causality for a particular sign choice of the
higher dimensional operator coefficient. This is exactly the
case for the even modes in model (2), which have n ¼ 4
andm ¼ 3. It explains why the sign of c1 has to be definite.
On the other hand the odd modes have n ¼ 2, and causality
only imposes an upper bound on μ.
This argument can be directly applied to other higher-

dim operators. In particular, the corrected Regge-Wheeler-
Zerilli equations in the presence of dimension-6 and
dimension-8 parity-preserving operators takes a similar
form as Eq. (3) [8,9]. Up to field redefinitions, there are two
additional dimension-8 operators beside the one in Eq. (2).
While one of them is parity violating and is beyond the
scope of this Letter, another operator c2ðεabefRabcdRefcdÞ2

only affects the odd modes with V− ∼ l4. In this case, the
odd modes exhibit a time advance when c2 < 0, and the
previous argument indicates that causality demands c2 > 0,
which again is fully consistent with the causality require-
ments inferred in Ref. [37] and with the low-energy EFT
arising from type II string theory compactification [15,16].
The constraints on the dimension-8 EFT implicitly

assume that dimension-6 ones are subdominant, however,
up to field redefinitions, the generic EFT of gravity could
also include the dimension-6 operator b1Rab

cdRcd
efRef

ab

(see SM [6]). In this case, the EFT corrections are sup-
pressed by μ ¼ ðGMΛÞ−4, with V ∼ l2 at large l.
Performing the same analysis, we find that consistency
with causality depends on the sign of the coefficient b1.
For b1 ¼ −1, both modes will always exhibit a resolvable
time advance and violate causality whenever Λ <
10−11 eV ðM⊙=MÞ (see SM [6]). However, whenever b1 ¼
þ1 neither mode presents a time advance. The statement of
infrared causality (imposed by consistency and causality of
the UV completion) thus implies that a low-energy EFT
of the form (1) can only enjoy a standard causal high-
energy completion when the coefficient of the Riemann3

operator is positive or is sufficiently suppressed that it can
be ignored as compared to higher order operators. This is
precisely consistent with known explicit string theory
realizations. Indeed, for maximally supersymmetric and
heterotic string theory that coefficient vanishes while it is
positive in bosonic string theory [51]. Note, however, that
this result is now proven to be generic for any consistent
tree level weakly coupled UV completion, independently of
the details of the specific realization.
Observability and outlook.—With the growing interests

in probing gravity with GWs, our study provides a
theoretical prior from causality considerations for all
constraints on EFTs of gravity. Remarkably, for the EFT
(2), the regime of parameters which was found to be
disfavored by the GW events GW151226 [52] and
GW170608 [53] in Ref. [10] could have been ruled out
on causality considerations alone, assuming a tree level UV
completion. This also implies that the current GW obser-
vations are not able to test the model (2) against GR as
causality priors require the cutoff of this EFT to be bounded
by at least Λ ≳ 7 × 10−11 eV (possibly much higher). We
emphasize that the lower bound on Λ is imposed only for
the particular dimension-8 model (2). General dimension-8
EFTs usually involve both c1 and c2 operators, and there
will be no lower bound on Λ from infrared causality
considerations if both c1 and c2 are positive and if c2=c1 ∼
Oð1Þ (see SM [6]), in which case the cutoff of the EFT can
be as low (or even lower) as that considered in Ref. [10] and
the dimension-8 EFTs could be probed or constrained with
the current GWobservations without being in conflict with
infrared causality. Note that if c2 ¼ 0, and consider BHs
with arbitrarily low mass then causality forces c1=Λ6 to be
arbitrarily close to zero.
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Moreover, probing the EFT of gravity with GWs is even
more promising when dimension-6 operators are included.
The dimension-6 operators typically dominate over the
dimension-8 ones in the EFT expansion and could con-
tribute to inspiral waveforms at lower post-Newtonian (PN)
order. While dimension-6 operators could start contributing
to the inspiral waveform at 5PN order [11], 3 orders lower
than the dimension-8 operators (see SM [6]), we can still
use the constraints obtained in Ref. [10] as a conservative
estimation of constraints on the dimension-6 EFT correc-
tions. This implies that GW events like GW151226 and
GW170608 could already probe the EFT of gravity with
dimension-6 operators for a cutoff Λ ∈ ½10−13; 10−12� eV
or even a wider range. Future GW detectors like Einstein
Telescope and LISA are expected to measure the PN
coefficients with fractional accuracies of 10% [54,55] or
better. Figure 3 shows the potential detectability of generic
dimension-6 operators with future GW detectors.
Specifically, we assume the dimension-6 operators are
detectable if their corrections on the phase of observed
inspiraling GWs, calculated within the EFT validity
regime, is greater than Oð1Þ. For a given GW source,
the EFT corrections are proportional toΛ−4 and accumulate
during inspiral. Therefore, the total dephasing could be less
than Oð1Þ, if Λ is too large or is so small that there are not
enough GW data available within the EFT validity regime,
leading to an upper bound and a lower bound on Λ for the
dimension-6 operators to be detectable. Remarkably, it is
possible to probe the dimension-6 operators of the EFT of

gravity while remaining consistent with causality at a cutoff
in the range Λ ∈ ½10−14; 10−11� eV if we observe binary
BHs of 20 M⊙ inspiraling at 300 Mpc with the Einstein
Telescope. That range can then be lowered to Λ ∈
½10−17; 10−15� eV if we observe two 105 M⊙ BHs inspiral-
ing at 3 Gpc with LISA.
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