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The thermodynamic uncertainty relation expresses a seemingly universal trade-off between the cost for
driving an autonomous system and precision in any output observable. It has so far been proven for discrete
systems and for overdamped Brownian motion. Its validity for the more general class of underdamped
Brownian motion, where inertia is relevant, was conjectured based on numerical evidence. We now
disprove this conjecture by constructing a counterexample. Its design is inspired by a classical pendulum
clock, which uses an escapement to couple the motion of an oscillator to another degree of freedom (a
“hand”) driven by an external force. Considering a thermodynamically consistent, discrete model for an
escapement mechanism, we first show that the oscillations of an underdamped harmonic oscillator in
thermal equilibrium are sufficient to break the thermodynamic uncertainty relation. We then show that this
is also the case in simulations of a fully continuous underdamped system with a potential landscape that
mimics an escaped pendulum.
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Introduction.—Being able to tell the time precisely,
regardless of astronomical observation, has ample impor-
tance for virtually all of human civilization. Ancient water
clocks or hour glasses relied on the steady flow of matter.
However, the precision of such devices was strongly limited,
because of inhomogeneities or unpredictable external
influences. A revolution in the history of timekeeping was
the invention of the escapement. This mechanism uses
coherent oscillations of a physical system to regulate the
forward motion of a cog loaded with a weight and connected
to a hand that displays time. Galileo realized that a swinging
pendulum can provide such oscillations, since its period is
(for small angles) independent of its amplitude. This inspired
Huygens’ invention of the pendulum clock in 1656, setting
standards in precision for centuries to come [1]. This Letter
shows that this well-established principle even allows for
precision beyond the thermodynamic limits that have so far
been believed to apply to classical systems.
The performance of a clock can be quantified by its

precision and its turnover of energy. These quantities take
center stage in the thermodynamic uncertainty relation (TUR)
[2], formulated originally for biomolecular systems [3]. It
describes a trade-off between the overall cost for driving a
system and the precision observed in any output current.

More specifically, we consider a Markovian system in a
steady state producing an integrated current YðtÞ (e.g., the
accumulated angle of a clock hand). The energetic cost of
driving is quantified by the entropy production rate σ. It
corresponds (in the absence of chemical changes) to the heat
dissipated into a surrounding heat bath, divided by its constant
temperature T. This heat needs to be equal to the energy
expended on the system’s driving. The TUR states that

Var YðtÞ
hYðtÞi2 tσ ≥ 2; ð1Þ

where we set Boltzmann’s constant kB ¼ 1 and define
Var YðtÞ≡ hYðtÞ2i − hYðtÞi2, with averages h…i taken in
the steady state. This relation was first proven for the limit of
large times t [4], and later generalized to finite times [5,6].
The TUR rests on the premise of local detailed balance,

relating the log ratio of forward and backward transition
rates between discrete states of a system to the entropy
produced in a transition [7]. Brownian diffusion fits into
this framework if it can be described as overdamped,
meaning that momentum variables are assumed to relax
instantly to a local equilibrium. Here, the TUR is recovered
either through a fine discretization of the state space or
directly from a Langevin description [8,9].
An underdamped description of Brownian dynamics

explicitly retains the inertia that is present in every classical
dynamical system. Yet, this more general dynamics lies
beyond the original framework of the TUR. There, tran-
sitions in a finely discretized phase space appear irrevers-
ible without the simultaneous reversal of momenta, which
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leads to a formally divergent entropy production, despite
the actual entropy production being finite [10]. Bounds on
the precision of irreversible currents in underdamped
systems have been derived [10–14], however, they are
weaker than the TUR or require additional information
about the system (beyond the entropy production rate).
Violations of the TUR in its original form have been
observed where an external magnetic field breaks time-
reversal symmetry [15,16]. It is also known that ballistic
motion on short timescales spoils the finite-time variant of
the TUR. Yet, numerical evidence suggested that the TUR
would hold for large times [17], in line with the intuition
that sufficient driving is needed to overcome the time-
reversal symmetry of thermal equilibrium.
In this Letter, we provide a disproof of the TUR for

underdamped dynamics. As it turns out, the principle of an
escapement, originally conceived to ward off environmental
perturbations, is effective even if these are of purely thermal
origin. We develop a minimal thermodynamically consistent
model for a pendulum clock, which yields at given energetic
cost high precision beyond the limits of the TUR.
Once wound, pendulum clocks operate autonomously.

Hence, they are different from periodically driven systems,
for which refined TUR’s have been derived [18–22]. Taken
for themselves, periodic systems do not obey the original
TUR. It nonetheless holds on a global scale taking into
account the infinite cost required to generate a deterministic
protocol in a Markovian framework [23]. We take this idea
further, describing an escapement as a way to couple a
discrete system to an oscillating system that is not perfectly
precise, but comes at small (or even zero) energetic cost.

General setting.—We consider a system consisting of two
subsystems, as shown in Fig. 1. The first, which we call an
“oscillator,” could be an arbitrary physical system described
by a state xðtÞ (in our main example and Fig. 1 we choose
this to be a pendulum subject to thermal noise). The other
subsystem, which we call a “counter,” is a one-dimensional
degree of freedom on an infinite discrete lattice. For nota-
tional convenience we label pairs of adjacent states by
integers y, denoting the upper state as y− and the lower state
as yþ, and identifying yþ and ðyþ 1Þ− as the same states of
the counter. In the picture of a pendulum clock, the discrete
state space of the counter corresponds to orientations of the
seconds hand, mapped to the infinite number line by keeping
account of full revolutions around the clock face.
Jumps between any y− and the corresponding yþ occur

continuously in time and are biased toward the latter by a
nonconservative force (e.g., provided by a weight on a
cord). The work delivered by this force in a forward jump
divided by the temperature T defines the affinity A, fixing
the log ratio of the rates for forward and backward
transitions through the local detailed balance condition

ln
kðy− → yþÞ
kðyþ → y−Þ ¼ A: ð2Þ

Since the states y− and yþ have the same internal energy,
the first law requires the work to be dissipated as heat,
increasing the entropy in the environment by A. Conversely,
a backward step decreases this entropy by A.
The escapement mechanism is realized by exploiting the

freedom of choice of a common prefactor to both rates,
which can be made dependent on the state x of the
oscillator. We model that the escapement can be in either
of two states iðxÞ ∈ f0; 1g. If x is the angular displacement
of a pendulum, an obvious choice is iðxÞ ¼ 1 for x ≥ 0 and
iðxÞ ¼ 0 for x < 0. For iðxÞ ¼ 1, we set the transition rates
kðy∓ → y�Þ ¼ k� for y odd and kðy∓ → y�Þ ¼ εk� for y
even. Vice versa, for iðxÞ ¼ 0, we set kðy∓ → y�Þ ¼ εk�

for y odd and kðy∓ → y�Þ ¼ k� for y even. The rates kþ
and k− ¼ kþ expð−AÞ are both chosen to be much larger
than the inverse of the fastest relevant timescale of the
oscillator. In contrast, the factor ε > 0 is chosen sufficiently
small such that the rates εk� are much smaller than the
inverse of the slowest timescale of the oscillator. This
choice of rates ensures that, after a change of the state iðxÞ,
the counter is effectively constrained to a single pair of
states y�, between which it equilibrates quickly. It can then
be found in either of the states at the conditional probability

p� ¼ k�=ðkþ þ k−Þ ¼ expð�A=2Þ=½2 coshðA=2Þ�: ð3Þ

Next time the state iðxÞ changes, the counter will have
ended up in either of the states y�, whose link then gets
effectively broken. Depending on this outcome, the counter

FIG. 1. Minimal model for a pendulum clock subject to thermal
noise. An oscillating degree of freedom x (bottom), is coupled to
a discrete counter degree of freedom (top), where y labels pairs of
adjacent states y− and yþ. A typical trajectory is shown in the
middle, with snapshots of the configuration at its beginning (left)
and end (right). Transitions of the counter are generally biased
downward. When x > 0, transitions between even pairs of states
y� are strongly suppressed and transitions between odd ones are
very fast, and vice versa for x < 0. This way, transitions from one
pair of states y to a neighboring one are possible only upon a
“tick,” when the pendulum crosses through x ¼ 0.
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then proceeds to fluctuate either between states ðy − 1Þ�
or ðyþ 1Þ�.
We see that upon every change of iðxÞ, called a “tick” in

the following, the variable y, labeling the pair of states
between which the counter currently fluctuates, performs a
single step of an asymmetric random walk. In this random
walk, the number of ticks NðtÞ up to time t plays the role of
a discrete time. The steps taken by y upon subsequent ticks
are independent and identically distributed, such that (given
y ¼ 0 at time t ¼ 0) the central limit theorem yields the
conditional probability pðyjNÞ as a Gaussian with mean
and variance

NJyjN ≡ Nðpþ − p−Þ ¼ N tanhðA=2Þ; ð4Þ

2NDyjN ≡ N½pþ þ p− − ðpþ − p−Þ2� ¼ N=cosh2ðA=2Þ:
ð5Þ

While the dynamics of the counter depends strongly on
the dynamics of the oscillator, there is no feedback in the
other direction. This is possible in our model because a
change of iðxÞ leaves the energy levels of the counter intact,
such that no work is transferred between the two sub-
systems. In practice, where the discrete dynamics of the
counter is derived from the diffusion in a corrugated
potential, the reduction of rates by the factor ε requires
the insertion of some potential barrier. This can be achieved
at the expense of a vanishingly small amount of work, by
finely tuning the width and height of the barrier [18].
With this insight, we see that the process NðtÞ counting

the number of ticks generated by the oscillator up to time t
is a priori independent of the counter y. Given the
distribution pðN; tÞ, the distribution of the state of the
counter at time t follows as

pðy; tÞ ¼
X
N

pðyjNÞpðN; tÞ: ð6Þ

We now assume that the dynamics of the oscillator is such
that NðtÞ satisfies a central limit theorem with mean h _Nit
and variance 2DNt, as will be the case for the harmonic
oscillator considered below. Then, the distribution pðy; tÞ is
Gaussian as well with mean and variance

hyðtÞi ¼ h _NiJyjNt; ð7Þ

Var yðtÞ ¼ 2ðDyjNh _Ni þDNJ2yjNÞt: ð8Þ

The entropy production rate of the counter is given by

σctr ¼ Ah _NiJyjN; ð9Þ

which is the affinity of a single step multiplied by the net
rate of forward steps. The entropy production rate for the
total system σ ¼ σctr þ σosc follows by adding the entropy
production of the oscillator σosc.

Given the three relevant quantities for the oscillator, σosc,
h _Ni, andDN , we can now check whether a TUR of the form
(1) holds for the observable y for all values of the affinity A.
If it does not, then the TUR cannot be valid for the type of
dynamics underlying the oscillator.
In particular, if the oscillator system is in thermal

equilibrium, the only entropy production is that of the
counter, and the product of relative uncertainty and entropy
production becomes

lim
t→∞

Var yðtÞ
hyðtÞi2 tσ ¼ fðA;DN=h _NiÞ ð10Þ

with the function

fðA; rÞ ¼ 2A½1= sinhðAÞ þ r tanhðA=2Þ�; ð11Þ

shown in Fig. 2(a). For r ≥ 1=3, it has the global minimum
2, attained for A → 0. Hence, for DN=h _Ni ≥ 1=3, an
inequality in the form of the TUR holds. However, for
DN=h _Ni < 1=3 the relation is broken for sufficiently small
values of A.
Harmonic oscillator in equilibrium.—We now specify

the oscillator system to be a pendulum, modeled as an
underdamped harmonic oscillator in a heat bath at the same
temperature T as the heat bath of the counter. The position x
and velocity v obey the Langevin equation

_x ¼ v; m_v ¼ −mω2x − γvþ ξðtÞ; ð12Þ
where the dot denotes a time derivative,m is the mass,ω the
undamped angular frequency, and γ the damping coefficient.
The Gaussian white noise ξðtÞ has zero mean and correla-
tions hξðtÞξðt0Þi ¼ 2γTδðt − t0Þ. The equilibrium state is
the Gaussian peq ¼ exp½−Eðx; vÞ=T�=Z with the energy
Eðx; vÞ ¼ mðω2x2 þ v2Þ=2 and normalization Z.
Partitioning the state space into iðxÞ ¼ 1 for x ≥ 0 and

iðxÞ ¼ 0 for x < 0, ticks occur whenever x crosses through
zero. The total number of ticks up to time t is

FIG. 2. (a) Plot of the function fðr; AÞ of Eq. (11), for selected
values of the parameter r. The value r ¼ 1=3 is a critical one,
below which a minimum below one occurs at nonzero A.
(b) Correlation function h _Nð0Þ _NðtÞi=h _Ni (solid) and its integralR
t
0þ dτ½h _Nð0Þ _NðτÞi=h _Ni − h _Ni� (dashed). The parameter γ=ðmωÞ
has values 1.5 (blue/dark gray), 0.981 (red/medium gray), and 0.2
(yellow/light gray).
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NðtÞ ¼
Z

t

0

dτjvðτÞjδ½xðτÞ�; ð13Þ

where the factor jvj ensures that every crossing of x ¼ 0 at
speed v increments NðtÞ by one. The average rate of ticks
follows readily from the equilibrium distribution as

h _Ni ¼
Z

dx
Z

dvpeqðx; vÞjvjδðxÞ ¼ ω=π: ð14Þ

The dispersion of ticks is calculated as [24]

DN ¼ 1

2
h _Ni þ

Z
∞

0þ
dτ½h _Nð0Þ _NðτÞi − h _Ni2�: ð15Þ

The lower limit 0þ indicates that the trivial self-correlation of
every tick at τ ¼ 0 is excluded, it produces the first term. The
correlation function h _Nð0Þ _NðτÞi=h _Ni [shown in Fig. 2(b)]
can be interpreted as the probability density of a tick
occurring at time τ given a tick at time 0. We calculate it
analytically from the Gaussian propagator [25] and evaluate
the integral in Eq. (15) numerically. The mean and variance
of the counter variable yðtÞ can then be calculated using
Eqs. (7) and (8), provided the timescale separation k� ≫
ω=π and k� ≫ γ=m [25]. For small damping γ, the corre-
lation function exhibits oscillations with maxima at sub-
sequent ticks, which are initially sharply peaked and then
become broader. The time in between these peaks can have a
sufficient negative contribution, so that the overall integral
becomes less than−h _Ni=6, yieldingDN=h _Ni < 1=3. This is
the case for the damping below a certain critical value,
determined numerically as γ=ðmωÞ ≃ 0.981. Remarkably,
this critical value presents still a fairly strong damping, with
just one coherent oscillation discernible in Fig. 2(b). For any
damping weaker than that, the TUR is violated for matching
affinity A.
In the limit of vanishing damping, γ → 0, the sequence

of ticks becomes deterministic (regardless of the energy,
which is sampled initially from peq). The counter system
then behaves as a discrete-time Markov process, for which
the possibility of violating the TUR (1) is well known
[19,26]. Yet, we show here that such a discrete-time process
can be realized as a limiting case of a continuous one,
without additional entropic cost. In accordance with the
discrete-time TURs of Refs. [19] and [27], our model
allows for a vanishing uncertainty product (10) for
DN=h _Ni → 0 and A → ∞. The latter entails either diver-
gent entropy production or vanishing speed h_yi. For clocks
that require the hand to move forward at a nonvanishing
speed, a recent study shows that precision does indeed
come at a minimal energetic cost [28].
Continuous model.—So far, we have shown that the

TUR does not hold for systems consisting of a discrete and
an underdamped continuous degree of freedom. We now
show numerically that the TUR can also be broken with

two continuous degrees of freedom. Moreover, we consider
an escapement that, like in actual pendulum clocks,
provides a feedback on the oscillator to sustain amplitudes
beyond those of equilibrium oscillations.
We use an underdamped Langevin equation of the form

m̈r ¼ −∇VðrÞ − γ_rþ fexey þ ξðtÞ ð16Þ

for the configuration r ¼ ðx; yÞT , with the massm, damping
γ, a driving force fex acting in the y direction, and a noise
term ξðtÞ with two independent components with the
same properties as for the harmonic oscillator above.
The potential is harmonic in x, with an additional coupling
term, VðrÞ ¼ mω2x2=2þ VcðrÞ.
We choose the coupling term such that it reinforces the

harmonic motion of an undamped oscillator of frequency ω
and a certain amplitude a in the x direction while moving
steadily at terminal velocity fex=γ in the y direction. This
ideal motion traces out the curve x̂ðyÞ ¼ a sinðωyγ=fexÞ,
and we choose the coupling potential such that this curve is
favored, setting VcðrÞ ¼ κ½x − x̂ðyÞ�2=2, with some stiff-
ness κ. Figure 3(a) shows this potential and the ideal curve.
For suitably chosen κ and a, sample trajectories follow the
ideal curve closely. The potential landscape acts as an
escapement, providing potential barriers that impede the
motion in the y direction when it is too fast, and accelerates
it when it is too slow.
We simulate the steady state of the system by numeri-

cally integrating the Langevin equation (16), using the
method of Ref. [29]. The variance of yðtÞ is calculated for
samples of time windows of length t taken from a long
trajectory. The current Jy ¼ hyðtÞi=t (for any t) is evaluated

FIG. 3. (a) Potential landscape Vðx; yÞ serving as a continuous
model for an escapement. The external force fex ¼ 1 is indicated
as a tilting in the y direction. The ideal curve x̂ðyÞ is shown as red
dashed, with sample trajectories in white. Parameters: κ ¼ 1,
a ¼ 3, ω ¼ 1, γ ¼ 0.1, T ¼ 1, and m ¼ 1. (b) Uncertainty
product as a function of the length t of the time window. The
bound conjectured in Ref. [17] (solid line) corresponds to free
diffusion in y (κ ¼ 0, dark gray). This bound holds for the
washboard potential VcðrÞ ¼ ðfexγ=ωÞ sinðωyγ=fexÞ (light gray).
For the escapement potential the bound is broken. In particular,
the long-time limit is below the value 2 relevant for the TUR (1)
for all three combinations of the parameters κ, a shown (red, blue,
yellow). All other parameters as in (a).
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as the average speed over the whole trajectory, and the
entropy production rate follows as σ ¼ fexJy=T.
As a result, the escapement mechanism suppresses

fluctuations in the y direction, compared to the fluctuations
of an underdamped particle diffusing freely, see Fig. 3(b).
In Ref. [17], it had been conjectured that free diffusion sets
a lower bound on the uncertainty product [the left hand side
of the TUR (1)] for underdamped dynamics on finite time-
scales. While this supposed bound holds true for most
generic potential landscapes (and in particular for uncoupled
dynamics, e.g., a washboard potential in the y direction
independent of x), it is broken for our design of an
escapement. Violations occur for any t > 0, and in particular
in the long-time limit, over a robust range of the parameters
κ and a.
Outlook.—We have used a simple design of an escape-

ment coupled to a pendulum to construct a counterexample
to the TUR for underdamped dynamics. The considerations
that have led to Eqs. (7)–(9) are specific for the model of the
escapement, but completely general about the oscillator
producing the ticks. The application to other physical
systems may also be fruitful. For instance, for quantum
systems exhibiting coherent oscillations, a general TUR of
the form (1) could also be ruled out, in line with previous
observations [15,30,31]. An atomic clock could hence yield
precision beyond the limitations of the TUR as well.
Likewise, a thermodynamically consistent analysis of

resistor-inductor-capacitor (RLC) circuits [32] could reveal
coherent oscillations similar to those of the underdamped
oscillator, showing that the TUR is broken not only for
constant, external magnetic fields but also for fluctuating
magnetic fields generated by the system itself. Steady state
thermoelectric devices exploiting this fact could evade the
trade-off between power, efficiency, and constancy that
follows from the TUR [33], similar to cyclically driven heat
engines [34,35].
Future research, systematically comparing different

designs of escapement mechanisms and oscillator systems,
may reveal ultimate thermodynamic bounds on the pre-
cision of autonomous clocks and complement thermody-
namic uncertainty relations for underdamped dynamics.
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