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We determine the full statistics of nonstationary heat transfer in the Kipnis-Marchioro-Presutti lattice gas
model at long times by uncovering and exploiting complete integrability of the underlying equations of the
macroscopic fluctuation theory. These equations are closely related to the derivative nonlinear Schrédinger
equation (DNLS), and we solve them by the Zakharov-Shabat inverse scattering method (ISM) adapted by
D.J. Kaup and A. C. Newell, J. Math. Phys. 19, 798 (1978) for the DNLS. We obtain explicit results for the
exact large deviation function of the transferred heat for an initially localized heat pulse, where we uncover

a nontrivial symmetry relation.
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Introduction.—Full statistics of currents of matter or
energy in macroscopic systems away from thermodynamic
equilibrium is a fundamental quantity that has attracted
much attention from statistical physicists in the past two
decades. Major progress has been achieved in determining
this quantity for nonequilibrium steady states in simple
models of interacting particles [1-4]. Nonstationary fluc-
tuations of current, however, proved to be much harder for
analysis [5-11].

A convenient and widely used family of models for
studying the full statistics of currents is stochastic lattice
gases [12-15]. One important example is the Kipnis-
Marchioro-Presutti (KMP) model of heat transfer. The
KMP model involves immobile particles occupying a
whole lattice and carrying continuous amounts of energy.
At each random move the total energy of a randomly
chosen pair of nearest neighbors is randomly redistributed
among them according to uniform distribution. The KMP
model originally attracted much interest as the first model
for which Fourier’s law of heat diffusion at a coarse-grained
level was proven rigorously [16]. By now it has become a
paradigmatic model of nonequilibrium fluctuations of
transport [4,6-8,11,17-27].

Here we study a full nonstationary heat-transfer statistics
in the KMP model on an infinite one-dimensional lattice.
Suppose that only one particle has a nonzero energy at
t = 0. Because of the energy exchange with the neighbors,
the energy will start spreading throughout the system. At
times much longer than the inverse rate of the energy
exchange between the two neighbors (equal to 1/2), and at
distances much larger than the lattice constant (equal to 1),
the mean coarse-grained temperature #(x, ) in the KMP
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model is governed by the heat diffusion equation [12,14,16]
d,i(x,t) = O%(x,t). The initial temperature is a delta
function, i(x, t = 0) = W§(x), and so the solution is

it(x,1) = (W/\/4xr) exp(—x2/41). (1)

However, in stochastic realizations of the KMP model the
coarse-grained temperature will fluctuate around the expected
profile #(x, 1), see Fig. 1. To characterize these nonstationary
fluctuations, we will consider the total amount of heat W,
observed on the right half line x > O attime t = 7 > 1. The
expected value of W. is W/2, and we will study the full
time-dependent statistics of the heat excess,

J= /w u(x,t=T)dx—W/2.
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FIG. 1. Monte Carlo simulation of the KMP model with
W = 1. Plotted is the simulated temperature profile u# as a
function of x at time r = 1.5 x 10* (bars), its spatial average
over each 50 consecutive lattice sites (solid line) and the
theoretical Gaussian profile (1) (dashed line).
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Obviously P(J, T), the probability distribution of J at time 7,
has a compact support |J| < W/2.

Similar nonstationary large-deviation settings, but with
a steplike initial condition for the particle density or
temperature, have been recently studied for a whole family
of diffusive lattice gases [6—10], of which the KMP model
is an important particular case. The main working tool of
these studies has been the macroscopic fluctuation theory
(MFT) [28]: a weak-noise theory, whose starting point is
fluctuational hydrodynamics (FH) [12,14,29]. The FH is a
coarse-grained description of the lattice gas, which is
accurate when the characteristic length scale of the problem
(here the diffusion length V/T) and the observation time T
are much larger than the lattice constant 1 and the inverse
elemental rate 1/2 of the energy exchange, respectively.
For diffusive lattice gases with a single conservation law
the FH has the form of a single macroscopic Langevin
equation, which accounts for the fluctuational contribution
to the heat or mass flux. For the KMP model the Langevin
equation reads [12,14]

By = O, (D + v 2un), (2)

where u(x,t) is the temperature, and n(x,f) is a
delta-correlated ~ Gaussian noise:  (n(x,7)) =0 and
(n(x, hn(x', 1)) = 6(x —x')6(t = 7).

The MFT [28,30] relies on a saddle-point evaluation of
the path integral for the stochastic process, described by
Eq. (2). The small parameter of the saddle-point evaluation
is again 1/+/T < 1: long times correspond to a weak noise.
The saddle-point evaluation of the path integral boils down
to a minimization of the action functional [30], constrained
by the specified heat excess J at t = T and obeying the
specified initial condition u(x, t = 0). For the statistics of
the heat (or mass) excess, the MFT equations and boundary
conditions in time were derived in Ref. [6], and we will
present them shortly. For completeness, we also present
their derivation in the Supplemental Material [30]. The
solution of the MFT problem describes the optimal path of
the process: the most likely time history of the temperature
field u(x,r) which dominates the probability distribution
P(J, T) that we are after. The MFT problem, however, has
proven to be very hard to solve analytically, especially for
quenched (that is, deterministic) initial conditions [31]. In
particular, for the KMP model, only small-J [7] and large-J
[8] asymptotes have been obtained until now (but for a
steplike initial condition).

This Letter reports a major advance in this area of
statistical mechanics. We present an exact solution to the
heat excess statistics problem by uncovering and exploiting
complete integrability of the underlying MFT equations.
We obtain explicit results for an initially localized heat
pulse, u(x,t = 0) = W§(x), for which we uncover a non-
trivial time-reversal mirror symmetry. These are the first
exact non-steady-state large-deviation results for the

statistics of current in a lattice gas of interacting particles
for quenched initial conditions.

Formulation of the MFT problem [6,30].—Let us rescale
t,x,and u by T, \/T ,and W/ \/T , respectively. The optimal
path we are after is described by two coupled Hamilton
equations for the rescaled temperature field u(x, ) and the
conjugate “momentum density” field p(x,t), which
describes the optimal history of the noise #(x, ¢), condi-
tioned on the heat excess J.

It is convenient to introduce the (minus) gradient field
v(x,1) = —=0,p(x,t). In the variables u and v, the MFT
equations take the form [6,8,30]

Ou = 0,(0u + 2u’v), (3)
v = 0, (=0,v + 2ur?). (4)

The rescaled initial condition is
u(x,t =0) =5(x). (5)

The condition on the heat excess at t = T becomes

o 1 J
t=Ddx—== j=—. 6
A u(x, )dx S=I=y (6)

The minimization of the action functional, which enters
the constrained path integral, with respect to variations of
u(x,t) yields, aside from Egs. (3) and (4), a second
boundary condition in time [6],

v(x,t=1)=—-215(x), (7)

where A plays the role of a Lagrange multiplier, to be
ultimately fixed by the constraint (6).

Once u(x, 1) and v(x, t) are found, one can calculate the
rescaled action, which can be written as [6-8]

1 S
s —/ dt/ dxu*v?. (8)
0 —00

The action yields the probability density P(J, T, W) up to a
preexponent:

mT%LYZW)z—vﬁk<é>. (9)

Since /T > 1, Eq. (9) has a clear large-deviation structure,
and the action s plays the role of a rate function.

A crucial and previously unappreciated observation is
that Egs. (3) and (4) coincide with the derivative nonlinear
Schrodinger (DNLS) equation in imaginary time and space
[32]. The DNLS equation (with real time and space)
describes propagation of nonlinear electromagnetic waves
in plasmas and other media [33]. An initial-value problem
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for the DNLS equation is completely integrable via the
Zakharov-Shabat inverse scattering method (ISM) adapted
by Kaup and Newell for the DNLS [33]. The MFT
formulation presents a difficulty, however, as here one
needs to solve a boundary-value problem in time, rather
than an initial-value problem. Here we overcome this
difficulty by (i) making use of a shortcut that allows one
to determine the rate function s(j) even without the
knowledge of u(x, ¢) and v(x, ) for all ¢, and (ii) exploiting
a previously unknown symmetry relation [34], specific to
the initial condition (5):

v(x, 1)

Solution of the MFT problem.—Equations (3) and (4)
belong to a class of integrable systems for which a Lax pair
exists, i.e., as we explain below, the equations are equivalent

|

= —ﬂu(—x, 1 - t). (10)

—ik/2 —ivx/ﬁ>’ V)=

Vb= ( ik/2

—iuvik

and k is a spectral parameter. As one can check, the
compatibility condition 9,0,y = 0,0, which corre-
sponds to

d,U—-0,V+[U,V] =0, (13)

is indeed equivalent to Egs. (3) and (4).
Let us define the matrix 7 (x, y, ¢, k) as the x propagator
of the system (11), namely, the solution to

0T (x,y,t,k) =U(x,t,k)T (x,y,t,k) (14)

with 7 (x, x, ¢, k) = I (the identity matrix). At x — +oo,
where the fields u(x, 7) and v(x,) vanish, the matrix U
becomes very simple,

U(x > +oo,1,k) = <_ik/2 0 )

0 ik/2 (15)

Therefore, it is natural to define the full-space propagator
G(t, k) as follows:

) eikx/Z 0
Glr.k) = ;}LTO 0 o—ikx/2

y—=>—00

e—iky/Z 0
xT(x,y,t,k)< 0 eiky/2>' (16)

The entries of the matrix G(7, k) are the scattering ampli-
tudes of the system (11). The time evolution of G(z, k) is
easy to find. Indeed, the matrix 7 (x, y, ¢, k) satisfies

k?/2—ikuv

(—i(\/%fu + im@xu— ivVik2u*v

to the compatibility condition of a system of two linear
differential equations. The latter system defines scattering
amplitudes which depend on u and ». The idea behind the
approach that we shall use—the ISM—is to consider the time
evolution of these scattering amplitudes, which turns out to
be very simple, as shown below. By relating these scattering
amplitudes, at t =0 and 7 = 1, to the fields u and v, the
method will enable us to find the heat excess j = j(4) which
suffices for the calculation of s = s(j).

Adapting the derivation of Kaup and Newell [33] to
imaginary time and space, we consider the linear system

{8x1//(x, t,k) =U(x,t,k)w(x,t,k), (1)

o (x,t,k) =V(x, t,k)w(x,t,k),
where y(x, 1, k) is a column vector of dimension 2,
—i(\/ﬁ)%—i—ix/ﬁ@ﬂ—iﬁ%)%)

—k?/2 + ikuv
(12)

0T (x,y,t,k) =V (x,t,k)T (x,y,t, k)

=T (x,y,t,k)V(y, t,k). (17)

One can check that Eq. (17) is compatible with Eq. (14)
(ie., 0,0, 7 =0,0,T) due to Eq. (13). The matrix
V(x,1, k) too becomes very simple in the limit x — +oo0,

_1;((1) —01)' (18)

Plugging Eq. (18) into Eq. (17), one finds the time
evolution of 7 (x = o0,y = —oo0, £, k) which in turn, using
Eq. (16), yields that of G(z,k):

0= (3 a00)

:< <0k>2 b(0, K)e* ) (19
b(0,k)e™ a(0,k)

where we have introduced here a notation for the matrix
elements of G(z, k).

Plugging the temporal boundary conditions (5) and (7),
we calculate G(0,k) and G(1,k) explicitly by solving
Eq. (14), see Ref. [30]. Comparing the two solutions and
using Eq. (19) we obtain

V(x > £o0,1,k)

= —Jike ¥ ,
(20)

ik[Q.4 (k) + Q_(k)] — ikQ_(k) x ikQ..(k)
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FIG. 2. Analytical results for Q, (k), described by Egs. (22),
(23), and (25) (solid lines), versus numerical results (dashed
lines) for A = 1, or j = 0.09568.... The symmetric and antisym-
metric curves show ReQ, (k) and ImQ_ (k), respectively.

where Q. (k) are the Fourier transforms of v(z, 0) restricted
to z > 0 and z < 0, respectively:

Q_(k) = /_0 v(z,0)e™*dz,

o]

0. (k) = / " 0(z,0)e*dy. (21)

0

We solve Eq. (20) in Ref. [30], with the result

ikQy (k) =1—(1+0vy)e®®, (22)

oln (1 + idk'e ") dk’
O, (h)=+ | ——— 23
+(k) /_m K —kFi0t 2xi (23)

where v, = v(0%,0).

To compute v, we demand that Q. (k) be regular at the
origin, corresponding to a vanishing v(z,0) at infinity.
Setting k = 0 in Eq. (22) and using the Sokhotski-Plemelj
formula

© flk) dk _

Ak fof) di 1
o k£ 10T 27 I

A 27”.:F§f(0)’ (24)

we obtain after some algebra

dk’
2k’

+v, = exp [:F /oo arctan (Ak'e ") ] —-1. (25

Taking the derivative of Eq. (22) with respect to k at k = 0,
yields [30]

0.(0)

1 [oln(1+22k2e2F) A
4 /_m k> dk—75. (26)

Figure 2 shows ReQ_ (k) and ImQ_ (k) versus k at 1 = 1,
obtained by plugging Eq. (25) for v, into Eq. (22). This
figure also shows the same quantities computed by solving
Egs. (3) and (4) numerically with a back-and-forth iteration
algorithm [35]. The analytical and numerical curves are
almost indistinguishable.

FIG.3. The exactrate function s(j), given by Egs. (27) and (29)
(solid line) and two asymptotes: s(|j| < 1) =+/8z/2 and
Eq. (31) (dashed lines). Symbols: properly rescaled data from
10° direct Monte-Carlo simulations of the microscopic KMP
model for 7 = 102, see Ref. [30] for details.

Using Egs. (6), (10), and (21) alongside with the con-
servation law [ u(x, t)dx = 1, we determine j = j(A):

o 212 -2k
j(i):Q+(O)+l 1 In (14 A2k%e™2%)

22 4m ). K2

dk. (27)

Now we use a shortcut which makes the results we have
obtained so far sufficient for obtaining the rate function
s = s(j). The shortcut comes in the form of the relation
ds/dj = A, which follows from the fact that j and 1 are
conjugate variables, see, e.g., Ref. [36]. It allows one to
calculate s(j) bypassing Eq. (8) [which would require the
knowledge of the whole optimal path u(x, t)]. We have

di djdi di di A

Using Eq. (26), we integrate Eq. (28) with respect to 4 to get

o Liy(—A2k%e~2K y
s = 0.0+ [TREEEE el )
P 8k 2

where Liy(z) = Y%, z¥/k* is the dilogarithm function,
0.(0) is given by Eq. (26), and the integration constant
was determined from s(4 = 0) = 0. Equations (27) and (29)
give the complete rate function s(j) in a parametric form and
represent the main result of this work. The exact optimal
history of the temperature profile u(x, ¢) proved difficult to
obtain analytically, but it can be computed numerically [30].

Figure 3 shows s(j) alongside with two asymptotes: j — 0
and |j| — 1/2, which correspond to 4 — 0 and |A| — oo,
respectively. Also shown are results of Monte Carlo simu-
lations. The asymptote 4 — 0 can be obtained either from the
exact rate function (27) and (29) [30], or from a perturbative
expansion applied directly to the MFT equations [7]. By
virtue of the symmetry (10), the latter can be done very easily.
Indeed, in the leading order in 4 <« 1 Egs. (8), (10), and (1)
yield

/12
8v2r1

s(0) 2 A Lt /_ : A (x, )i (—x, 1 — 1) = (30)
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The shortcut relation ds/dj =4 can be rewritten as
(ds/dA)(dA/dj) = A. Combined with Eq. (30) it yields
s(j = 0) ~+/8xj%. Then, from Eq. (9), we see that typical
fluctuations of J are normally distributed with variance
W?/(322T)"/?. The T~'/? scaling of the variance should
be contrasted with the T'/? scaling, obtained for a steplike
initial condition [5-7]. However, the relative magnitude of
the fluctuations—the ratio of the standard deviation and the
average transferred heat—has the same scaling 7-'/* < 1 in
both settings, as to be expected from the law of large
numbers.

The asymptote of |1| — oo is more subtle [30]. The final
result, already in terms of j, is

. A=y Woy (=32 A2) P2
s(lj] = 1/2) = =222

4 2 2 /2
=—1n¥2| = /In—=4/In—=... |, (31)
3 A A A

where A=1/2—-]j| <« 1, and W_;(...) is the proper
branch of the product log (Lambert W) function [37]. At
j=1/2, s diverges and P vanishes, as to be expected.
Nested-log large-current asymptotes similar to Eq. (31)
appear to be typical for the KMP model and other models of
the hyperbolic universality class [8,9,11].

Discussion.—By combining the MFT and the ISM, we
calculated exactly the rate function s(j), see Eqs. (27) and
(29), which describes the full long-time statistics of non-
stationary heat transfer in the KMP model for an initially
localized heat pulse. This is the first exact non-steady-state
large-deviation result for the statistics of current in a lattice
gas of interacting particles for quenched initial conditions.
It opens the way to extensions of the ISM to additional
fluctuating quantities of the KMP model. Another chal-
lenging goal is to apply the ISM to the simple symmetric
exclusion process (SSEP) [12-15]—a lattice-gas model
with quite different properties [9]. Encouragingly, the MFT
equations for the SSEP (see, e.g., Ref. [6]) can be mapped
to Egs. (3) and (4) via a canonical transformation. This
transformation, however, complicates the boundary con-
ditions in time.

From a more general perspective, the MFT of lattice
gases is a particular case of the weak-noise theory, or
optimal fluctuation method (OFM): a highly versatile
framework which captures a broad class of large deviations
in macroscopic systems. For nonstationary processes the
OFM equations—coupled nonlinear partial differential
equations for the optimal path—are usually very hard to
solve exactly. One class of problems of this type, which has
received much recent attention, deals with the complete
one-point height statistics of an interface whose dynamics
is described by the Kardar-Parisi-Zhang equation [38]. The
OFM captures the complete Kardar-Parisi-Zhang height
statistics at short times [39-44]. Here too, a previous

analytical progress in the solution of the OFM equations
was limited to asymptotics of very large or very small
interface height. But very recently these OFM equations—
which coincide with the nonlinear Schrodinger equation
(NLS) (not the derivative one) [42]—have been solved
exactly [45,46] by the ISM for several “standard” initial
conditions. The two integrable systems, the NLS and
DNLS, are closely related, so our approach can be
compared with that of Refs. [45,46]. We used only standard
techniques of the ISM which do not rely on additional
tools, such as Fredholm determinants used in Refs. [45,46].
Because of its relative simplicity our approach appears to
be more readily adaptable to solving additional large-
deviation problems [47].
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