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We show that quantum fluctuations display a singularity at thermal critical points, involving the
dynamical z exponent. Quantum fluctuations, captured by the quantum variance [Frérot et al., Phys. Rev. B
94, 075121 (2016)], can be expressed via purely static quantities; this in turn allows us to extract the z
exponent related to the intrinsic Hamiltonian dynamics via equilibrium unbiased numerical calculations,
without invoking any effective classical model for the critical dynamics. These findings illustrate that,
unlike classical systems, in quantum systems static and dynamic properties remain inextricably linked even
at finite-temperature transitions, provided that one focuses on static quantities that do not bear any classical
analog—namely, on quantum fluctuations.
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Characterizing the dynamical behavior of systems close
to symmetry-breaking phase transitions [1] has far-reaching
implications, ranging from our understanding of the early
Universe to the behavior of interacting systems in labo-
ratory experiments [2–4]. Indeed, close to a critical point,
the fluctuations of the order parameter become correlated
over a characteristic distance (the correlation length ξ)
which can exceed arbitrarily the microscopic length
(namely, the distance between the elementary constituents);
as a consequence, such fluctuations build up over a
characteristic timescale (the relaxation time tc) much larger
than microscopic timescales. In particular, in the vicinity of
a thermal critical point at temperature Tc, ξ and tc are
expected to be related to the temperature T via

tc ∼ ξz ∼ jT − Tcj−νz; ð1Þ

where ν governs the divergence of ξ: and z is the dynamical
exponent [1,5] governing the so-called critical slowing
down of the order-parameter dynamics. A central goal of
the study of critical phenomena is the evaluation of the
various critical exponents for a given universality class.
A fundamental paradigm in classical physics is that, in

order to extract the dynamical exponent z at a thermal
phase transition, it is necessary to go beyond static

thermodynamic observables, and to investigate instead
the dynamics at criticality. Indeed, all static quantities
can be obtained from the knowledge of the free energy
F ¼ −kBT logZ (where Z is the partition function) and of
its derivatives; and, for classical systems, F is completely
independent of the dynamics. As a matter of fact, quantities
such as position and momentum enter independently in the
statistical sum over phase space, and, as an example,
the partition function of a system of classical particles is
fully independent of whether these particles have a ballistic
dynamics, a stochastic dynamics, etc.; therefore the
dynamical exponent z cannot be obtained from the knowl-
edge of the free energy. On the other hand, the z exponent
governs the singular behavior of dynamics, in accordance
with dynamical scaling theory [1], which has been con-
firmed either directly by measuring the dynamical response
functions in the vicinity of a critical point [6–9]; indirectly
via signatures of the Kibble-Zurek mechanism [10,11]; and
in numerical simulations of the dynamics of (classical)
microscopic models or classical field theories [12–18].
In the case of quantum systems, extracting ab initio the z

exponent at thermal transitions for a given quantum
Hamiltonian represents a notoriously difficult task. On
the theory side, the effective coarse-grained dynamics to be
studied can severely depend on the approximations made
(e.g., how collective modes are effectively included), see,
for instance, Refs. [19–21]; in numerical simulations,
computing the fully quantum real-time dynamics, or
performing the analytical continuation of imaginary-time
correlators [22], are prohibitive tasks for many-body
quantum systems.
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Yet, in spite of the above cited difficulties to investigate their
dynamics, quantum systems differ fundamentally from
classical ones in that, in quantum mechanics, static and
dynamic properties remain inextricably intertwined. As a
striking illustration, at zero-temperature (quantum) phase
transitions the corresponding dynamical exponent does gov-
ern the scaling of the (free) energy [23]. The link between
statics and dynamics must remain true at finite-temperature
transitions as well, given that the quantum-mechanical parti-
tion function is the trace of the imaginary-time evolution
operator. In this Letter we probe this connection by consid-
ering microscopic quantum models possessing a thermal
phase transition, andwhose order parameter is not a conserved
quantity; namely, it does not commute with the Hamiltonian.
As a consequence, the order parameter has quantum fluctua-
tions in addition to thermal fluctuations [24,25].We show that
these quantum fluctuations exhibit a weak singularity at
thermal transitions, governed by a combination of critical
exponents involving the dynamical z exponent.
Our prediction for the singularity of quantum fluctua-

tions stems from the dynamical scaling hypothesis, the
fluctuation-dissipation theorem and Kramers-Kronig rela-
tions; and it is rigorously verified using several exactly
solvable quantum models of thermal phase transitions. As
quantum fluctuations can be obtained from the partition
function, this singularity establishes a fundamental link
between the thermal critical dynamics of a quantum system
and its statistical properties. Our results are not in contra-
diction with the notion that thermal criticality is funda-
mentally of classical origin, as the leading singular
behavior of the order-parameter fluctuations coincides with
that of the classical limit of the models of interest; yet
quantum fluctuations of the order parameter introduce a
subleading singular behavior (containing the exponent z)
which can be analytically singled out, and which disappears
in the classical limit. At the practical level, this insight
allows one to extract the thermal z exponent of microscopic
quantum Hamiltonians without simulating the many-body
dynamics at all. We demonstrate that our approach can be
carried out successfully via numerically exact quantum
Monte Carlo (QMC) calculations on paradigmatic quantum
spin models exhibiting thermal transitions.
To avoid any confusion, it should be stressed that the

behavior of quantum fluctuations at thermal critical points,
as studied in this Letter, is completely independent of their
behavior at (zero-temperature) quantum critical points
[23,26–28], which are of no relevance to the present study.
We also stress that the thermal singularity of quantum
fluctuations is different from that of entanglement estima-
tors, such as negativity, whose thermal critical behavior still
lacks a general understanding [29–32].
Dynamical scaling hypothesis, and thermal singularity

of the quantum variance.—The linear response of a system
at thermal equilibrium to a weak time-dependent perturba-
tion is characterized by its dynamical susceptibility [1,33].

If O denotes the order parameter of a symmetry-breaking
phase transition, and if a weak time-dependent perturbation
in the form −fðtÞO is added to the Hamiltonian H of
the system, the dynamical susceptibility is defined as
χOðωÞ ¼ δhOiðωÞ=δfðωÞjf¼0, where hOiðωÞ and fðωÞ
are the Fourier transforms of hOiðtÞ and fðtÞ, respectively.
Here, hOiðtÞ ¼ Z−1Tr½OðtÞ exp ð−βHÞ� denotes an aver-
age over the equilibrium distribution at inverse temperature
β ¼ ðkBTÞ−1, with kB the Boltzmann constant, and OðtÞ ¼
eiHt=ℏOe−iHt=ℏ is the time-evolved operator in the
Heisenberg picture. According to the dynamical scaling
hypothesis [1,5], close to the critical point, the singular part
of the spectral function χ00OðtÞ ¼ ð1=2ℏÞh½OðtÞ; Oð0Þ�i (the
imaginary part of χOðtÞ) obeys in Fourier space the scaling
form

½χ00OðωÞ�s ¼ ½χð0ÞO �s g
�
ω

ωc

�
; ð2Þ

whereωc ∼ t−1c ∼ jT − Tcjνz; gðxÞ is a scaling function such
that

R
dxgðxÞ=x ¼ π; and ½χð0ÞO �s ∼ jT − Tcj−γ is the singu-

lar part of the static susceptibility of the order parameter
with critical exponent γ.
In classical systems the variance of the order parameter

VarðOÞ ¼ hO2i − hOi2 is related to the susceptibility via

the fluctuation-response relation VarðOÞ ¼ kBTχ
ð0Þ
O , and

therefore it exhibits the same power-law singularity. In
quantum systems, the above relation holds only if O is a
conserved quantity, namely, if ½H; O� ¼ 0; otherwise
quantum fluctuations are responsible for an extra contri-
bution to the variance, the quantum variance (QV),

VarQðOÞ ¼ VarðOÞ − kBTχ
ð0Þ
O > 0 [24]. Our central result

is that, at thermal criticality, the QVof the order parameter
(along with a whole family of coherence measures to which
it belongs) acquires a singular part scaling as

½VarQðOÞ�s≈A1jT−Tcj2νz−γþA2jT−Tcj4νz−γþ�� � : ð3Þ
Given that 2νz − γ ≥ 0 for all the universality classes
reported in the literature [1,5] this result has the immediate
implication that the QV of the order parameter does not
diverge at the critical point, despite being the difference
between two divergent quantities. This is consistent with the
intuition that quantum fluctuations do not alter the long
wavelength behavior of the system at thermal criticality—in
fact, their characteristic length scale, the quantum coherence
length, remains finite even at Tc [34]. At the same time, the
weak singularity of the QV fully exposes the dynamical
critical exponent, despite depending only on equilibrium
fluctuations and the static response of the system.
Proof of the main result.—Equation (3) follows directly

from the dynamical scaling hypothesis [Eq. (2)]. It is
indeed a basic result of linear response theory that both

VarðOÞ and χð0ÞO can be expressed in terms of the imaginary
part of the dynamical susceptibility [1,33]:
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VarðOÞ ¼ ℏ
Z

∞

0

dω
π

cothðβℏω=2Þχ00OðωÞ;

χð0ÞO ¼ 2

Z
∞

0

dω
π

χ00OðωÞ
ω

: ð4Þ

The first line is a consequence of the fluctuation-dissipation
theorem [35], and the second of causality [1,33].
Consequently, the QV admits the following expression

VarQðOÞ ¼ ℏ
Z

∞

0

dω
π

hQVðβℏωÞχ00OðωÞ; ð5Þ

where hQVðxÞ ¼ cothðx=2Þ − 2=x filters out the low fre-
quency modes in the integral (namely, the modes such that
ℏω ≪ kBT). In contrast, the functions of which is it
composed [cothðx=2Þ and 2=x] both diverge at zero
frequency. The dynamical scaling hypothesis, Eq. (2),
suggests that the characteristic frequency singled out by
χ00OðωÞ (corresponding, e.g., to its maximum), moves to
zero as T → Tc, and therefore the critical singularity of

both VarðOÞ and χð0ÞO stems from the critical enhancement
of the zero frequency contribution to the integrals Eq. (4).
Similarly, the singular part of the quantum variance
must also stem from the low-frequency part of the
integral Eq. (5). Assuming on other hand that χ00OðωÞ
vanishes as ω → ∞ faster than any power [36] we
may then Taylor expand hQVðxÞ at low frequency as
hQVðxÞ ¼ x=6 − x3=360þ…, to obtain

½VarQðOÞ�s ≈ ½χð0ÞO �s
�ðℏωcÞ2

kBT
I1 þ

ðℏωcÞ4
ðkBTÞ3

I2 þ � � �
�
; ð6Þ

where I1 ¼ ð6πÞ−1 R∞
0 dx xgðxÞ, I2 ¼ −ð360πÞ−1×R

∞
0 dx x3 gðxÞ, etc. Given the critical behavior of ½χð0ÞO �s
and ωc, we obtain Eq. (3).
Extension to asymmetry measures.—Equation (5) is very

similar to an expression derived for the quantum Fisher
information (QFI) [26] [with hQFIðxÞ ¼ tanhðx=2Þ], and in
fact, both the QV and the QFI belong to a larger family of
so-called quantum coherence (or “asymmetry”) estimators
[25], all admitting an analogous expression in term of χ00
(see the Supplemental Material [37] for further details).
Most importantly, for all the coherence measures of this
family the “quantum filter” hðxÞ appearing in the frequency
integrals of the dynamical susceptibility has an odd parity,
and therefore is linear at low frequency [26,37]. The latter
property, together with the dynamical scaling hypothesis
[Eq. (2)], are the only requirements leading to Eq. (3);
hence our result immediately applies to all of them. In the
specific case of the QFI, our result rectifies a statement of
Ref. [26] on the absence of thermal singularities [37].
Two exactly solvable models.—We first illustrate our

findings with two quadratic models which belong to the
same static universality class, yet have different z

exponents (we also treat the case of a quantum Ising model
with infinite range interaction in Supplemental Material
[37]). The first one is the so-called quantum spherical
model (QSM) on a d-dimensional lattice [44–46],
defined by the Hamiltonian HQSM ¼ ðg=2ÞPi P

2
i þ

ð1=2gÞPi;j Uði; jÞXiXj þ λ½Pi X
2
i − ðN=4Þ�, where

½Xi;Pi�¼iℏδij, and Uði; jÞ defines the interaction. The
second model describes a Bose-Einstein condensation
(BEC) transition [47–49], and is defined by
HBEC ¼ −μNB þP

kðϵk þ μÞa†kak, ½ak; a†l � ¼ δkl. The
Lagrange parameter λ (μ) imposes the constraint

P
ihX2

i i ¼
N=4 (

P
kha†kaki ¼ NB), withN the number of sites (NB the

number of bosons). In both models, we assume that at small
momenta ϵk ∼Uk ∼ kx, with d < x < 2d (x ¼ 2 corre-
sponds to short-range interactions in the QSM). Both models
have a phase transition at a critical temperature Tc,
and belong to the universality class of the spherical model
[50,51], with exponents ν¼½1=ðd−xÞ� and γ ¼ ½x=ðd − xÞ�
[46,49,51], so that λ; μ ∝ jT − Tcj½x=ðd−xÞ�. In the
Supplemental Material [37], we show that for the QSM,
the dynamical exponent is zQSM ¼ x=2, and that the
QV of the order parameter (OQSM ¼ N−1=2 P

i Xi) is
VarQðOQSMÞ ¼ ðℏg=2ω0ÞhQVðβℏω0Þ, with critical fre-
quency ω0 ¼

ffiffiffiffiffiffiffi
2gλ

p
. For the bosons (OBEC ¼ a0 þ a†0),

we find zBEC ¼ x and VarQðOBECÞ ¼ hQVðβμÞ. Close to
criticality, we therefore obtain

VarQðOQSMÞ ¼
ℏ2g

12kBT
−

ℏ4g2λ
720ðkBTÞ3

þ…;

VarQðOBECÞ ¼
μ

6kBT
−

μ3

360ðkBTÞ3
þ…: ð7Þ

The singular part of the QV in the QSM model stems
from the (negative) I2 contribution to Eq. (6), scaling as
jT − Tcj4νz−γ, which is consistent with zQSM ¼ x=2.
Remarkably, the QV vanishes at the BEC transition, as well
as in the whole BEC phase [52]. The singular contribution
scales as jT − Tcj2νz−γ [Eq. (3)], which is consistent with
zBEC ¼ x.
Extraction of the dynamical exponent using QMC.— The

QV can be calculated for any quantum model whose
thermodynamics can be calculated efficiently [24], opening
the route for a systematic calculation of the z exponent in a
large class of quantum many-body systems. We illustrate
this possibility by focusing on four paradigmatic models
exhibiting a finite-temperature transition, defined on
d-dimensional (hyper-)cubic lattices of size Ld: (i) the
2d ferromagnetic transverse-field Ising model (TFIM)
HTFIM ¼ −J

P
hiji S

z
iS

z
j − Γ

P
i S

x
i with Γ=J ¼ 1.3; and the

XXZ model HXXZ ¼ −J
P

hiji ðSxi Sxj þ Syi S
y
j − ΔSziS

z
jÞ

(with J < 0) in the three following cases: (ii) 2d easy-axis
model (Δ ¼ 1.2); (iii) 3d XX model (Δ ¼ 0); and (iv) 3d
Heisenberg model Δ ¼ 1) [53]. For all models hiji are
nearest-neighbor pairs on a d-dimensional lattice. All four
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models possess a finite-temperature transition. For models
(i) and (ii), the transition belongs to the 2d Ising univer-
sality class. However in model (ii) the magnetization along
z is conserved: it represents a diffusive mode which could
potentially couple to the order parameter and alter the z
exponent with respect to model (i) [1]. Model (iii) is
representative of the 3d XY universality class, and model
(iv) of the 3d Heisenberg class. We investigate all models
using quantum Monte Carlo based on stochastic series
expansion [54] which allows us to reconstruct the QV (as
already shown in Refs. [24,27,28]). The system sizes we
analyze (L ¼ 64 in d ¼ 2; L ¼ 28 in d ¼ 3) are not the
largest ones we can simulate, but the QVexhibits very little
scaling beyond these sizes [37], while its precision
degrades significantly in the ordered phase, as the QV
(per spin) is the nondiverging difference between two
divergent quantities. For all the models, Tc is estimated
by a scaling analysis of the full variance of the order
parameter (scaling as Lγ=ν at the transition point).
The QV per spin of the order parameter (uniform

magnetization O ¼ Jz for the 2d TFIM, O ¼ Jx for the
3d XX model, and staggered magnetizationO ¼ Jzst for the
2dXXZmodel and the 3dHeisenberg model) shows a clear
anomaly at the phase transition (Fig. 1). It is then fitted as

VarQðOÞðTÞ ¼ a0 þ a1T þ a2T2

þ ½AþθðδÞ þ A−θð−δÞ�jδj2νz−γ; ð8Þ
where δ ¼ T − Tc, and θ is the Heaviside step function. The
first line is a parabolic fit to the regular part, while the second
line is a fit to the dominant term of the singular part (the
critical exponents ν and γ are known for each universality
class [55]). In principle we have six fitting parameters
ða0; a1; a2; Aþ; A−; zÞ, which are nonetheless further

reduced: (a) for the d ¼ 2 models [(i) and (ii)], we set
A− ¼ 0, as suggested by the smallness of A− when treated as
a free parameter; (b) for the d ¼ 3 models, we set Aþ ¼ 0
(for the same reason as above) as well as a2 ¼ 0. A subtle
aspect of the fits is the discrimination of the singular part
from the regular one, since both are nondivergent. This is
particularly true for the models (i) and (ii), for which an
alternative fitting analysis is presented in the Supplemental
Material [37].
We perform our fits to Eq. (8) over windows of variable

width ½Tc − w; Tc þ w� around the critical point. Figure 1
shows the results: the fit quality is always very good for all
four models, with ðχ2Þred (χ2 per degree of freedom)
systematically reaching values around 1 upon shrinking
the fitting window down to the relevant critical region. As
for our final estimates of z, we retain the values at which
ðχ2Þred ≈ 1 and for which the fitted value has converged
upon reducing w (within the error bar): (i) z ¼ 1.95ð15Þ;
(ii) z ¼ 1.95ð10Þ; (iii) z ¼ 1.61ð15Þ; and (iv) z ¼ 1.36ð10Þ.
Models (i) and (ii) (2d Ising universality class) could
potentially be captured by Model C (z ¼ 2) [1,5]. The
alternative fitting strategy presented in the Supplemental
Material [37] gives z ¼ 1.88ð10Þ for model (ii), compatible
with z ¼ 1.95ð10Þ obtained above, while it gives z ≃
1.65ð5Þ for model (i), closer to experimental results on
quasi-2d magnets (z ≈ 1.6–1.8) [8,9,56–58]. For model
(iii), our estimate is compatible with that obtained by
Ref. [13] (z ¼ 1.62) via a dynamical simulation of the
classical 3D XY model. As for model (iv), our estimate is
slightly lower but compatible with z ¼ 1.49ð3Þ obtained
via dynamical simulations of classical Heisenberg
antiferromagnets [12,14,59], and with the experimental
estimate from neutron scattering studies of quantum
Heisenberg antiferromagnets [60,61].

(3) 3D XX model (4) 3D Heisenberg model
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FIG. 1. Thermal singularity of the quantum variance from QMC results, and fitted z exponents. The (a1)–(a4) panels show the
quantum variance of the order parameter close to the transition, together with a representative fit (black line) and the fitted regular part
(blue dashed line); the vertical line marks the transition point. The (b1)–(b4) panels show the resulting fitted z exponent as a function of
the fitting window width w around Tc, along with the reduced χ2 (the dashed line marks the unity threshold). (a1)–(b1): 2d TFIM
(Γ=J ¼ 1.3—lattice size L ¼ 64); (a2)–(b2) 2d antiferromagnetic XXZ model (Δ ¼ 1.2, L ¼ 64); (a3)–(b3) 3D XX model (L ¼ 28);
(a4)–(b4) 3D Heisenberg model (L ¼ 28).
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Conclusions.—We have shown that the dynamical expo-
nent z, governing the critical slowing down of the dynamics
close to a second-order thermal phase transition of a
quantum system, manifests itself in a weak singularity of
the quantum fluctuations of the order parameter. This general
result was illustrated by two exactly solvable models with
the same thermodynamic criticality but different critical
dynamics; by a quantum spin model with infinite-range
interactions amenable to exact diagonalization for large
system sizes (as discussed in the Supplemental Material
[37]); and exploited to extract the exponent z in four
quantum spin models in d ¼ 2 and d ¼ 3 from unbiased
QMC data. Our scheme gives access to the z exponent
associated with the intrinsic Hamiltonian dynamics (in the
absence of any external bath) without the need to simulate
the real-time quantum dynamics itself (which is a prohibitive
numerical task); and the z exponent can be extracted from
numerical (e.g., QMC) data without the need for analytic
continuation (which is also a very demanding task). Here we
have focused on the singularity of quantum fluctuations of
the order parameter, but other quantities are expected to
display similar singularities exposing the z exponent, offer-
ing alternative strategies for its numerical evaluation.
Therefore our approach opens a way to the calculation of
dynamical critical exponents for the Hamiltonian dynamics
of a large class of quantum many-body models—something
which is of extreme importance in the light of the recent
generation of experiments addressing the dynamics of closed
quantum systems close to critical points [4,10,62,63].
Moreover, the ability of inelastic neutron scattering experi-
ments to reconstruct quantum coherence estimators [64–67]
along with dynamical critical scaling [6] could lead to a
direct test of our predictions within the same experimental
platform. Finally, at a fundamental level, the precise con-
nection between microscopic quantum models (as studied in
this Letter) and effective classical theories [1,5,13–15] is a
fascinating topic for future investigations.
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