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We introduce novel higher-order topological phases of matter in chiral-symmetric systems (class AIII of
the tenfold classification), most of which would be misidentified as trivial by current theories. These phases
are protected by “multipole chiral numbers,” bulk integer topological invariants that in 2D and 3D are built
from sublattice multipole moment operators, as defined herein. The integer value of a multipole chiral
number indicates how many degenerate zero-energy states localize at each corner of a system. These
higher-order topological phases of matter are generally boundary-obstructed and robust in the presence of
chiral-symmetry-preserving disorder.
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Higher-order topological band theory has expanded the
classification of topological phases of matter across insula-
tors [1–13], semimetals [13–18], and superconductors [19–
31]. It generalizes the bulk-boundary correspondence of
topological phases, so that an nth-order topological phase
in d dimensions has protected features, such as gapless
states or fractional charges, only at its (d − n)-dimensional
boundaries. Currently, two complementary mechanisms are
known to give rise to higher-order topological phases
(HOTPs): (i) corner-induced filling anomalies due to
certain Wannier center configurations [2,5,9,32,33] and
(ii) the existence of boundary-localized mass domains
[2,3,6–8,34,35]. These two mechanisms protect the frac-
tional quantization of corner charge and the existence of
single in-gap states at corners, respectively.
In first-order topological systems, phases protecting

multiple states at each boundary also exist. This occurs
in chiral-symmetric systems (class AIII in the tenfold
classification [36–38]) in odd dimensions. In 1D, for
example, such phases are identified by a Z topological
invariant known as the winding number [39,40], which
classifies the Hamiltonian’s homotopy class within the first
homotopy group π1½UðNÞ� and indicates the number of
degenerate zero-energy states at each boundary. In contrast,
the Wannier center approach applied to chiral 1D systems
only yields a Z2 classification according to whether the
electric dipole moment (given by the position of the
Wannier centers) is quantized to 0 or e=2. In particular,
it labels all 1D chiral-symmetric systems with even winding
numbers as trivial.
The observation that 1D systems in class AIII have a

broader classification than the one provided by the Wannier
center picture suggests that, analogously, a broader clas-
sification could exist for HOTPs in class AIII. Consider, for
example, stacking N topological quadrupole insulators [1].

If they are coupled in a chiral-symmetric fashion, the
overall system will have N zero-energy states protected at
each corner. Yet, the topological invariants that protect this
phase have not been found. Moreover, the existence of such
broader classification would apparently be at odds with the
tenfold classification of topological phases, which predicts
only trivial phases for chiral-symmetric systems in 2D. This
prediction stems from the fact that higher-dimensional
generalizations of the 1D winding number—which
identify classes within the homotopy group πd½UðNÞ� in
d-dimensional systems—are trivial for even d [41]. The
resolution to this apparent contradiction is that the tenfold
classification applies to first-order, bulk-obstructed topo-
logical phases, while the phases we consider here are higher
order and boundary obstructed. Hence, a different approach
is needed to classify chiral-symmetric HOTPs, i.e., one that
goes beyond the natural generalization of the 1D winding
number to higher dimensions.
In this Letter, we demonstrate the existence of a Z

classification for HOTPs in class AIII and identify the
topological invariants in 2D and 3D that protect them. We
refer to these invariants as multipole chiral numbers
(MCNs) because they generalize the classification provided
by the 1D winding number to higher-dimensional systems
but, instead of being the traditional generalization of
winding numbers to higher dimensions [40], they are built
from sublattice multipole moment operators and capture
higher-order, boundary-obstructed topology [4,42–46].
These invariants are calculated in the bulk of the system,
i.e., with periodic boundary conditions, and, for sufficiently
large systems, their integer values indicate the number of
degenerate zero-energy states at each corner of a system
with open boundaries. Thus, MCNs provide a higher-order
bulk-boundary correspondence for topological phases in
class AIII. Since MCNs are defined in real space, they can
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be used to characterize disordered systems, and here we
demonstrate that phases protected by MCNs are robust in
the presence of chiral-symmetry-preserving disorder. The
existence of phases with MCNs reveals a richer classifi-
cation of HOTPs, provides a broader understanding of
boundary-obstructed topological phases beyond the
Wannier center and mass domain perspectives, and has
implications for the further classification of HOTPs in
interacting systems [47]. The phases we present can be
readily proven in several synthetic material platforms [48–
51], and recent advances on the generation and control of
long-range hoppings could enable their realization in
ultracold atoms in optical lattices [52–55].
Let us focus our attention on chiral-symmetric

Hamiltonians H, which satisfy ΠHΠ ¼ −H, where Π is
the chiral operator. In the basis in which the chiral operator
is Π ¼ τz, the Hamiltonian H takes the form

H ¼
�

0 h

h† 0

�
; ð1Þ

which allows a partition of the lattice into two sublattices, A
and B, with opposite chiral charge. The eigenstates ofH can
be written as jψni ¼ ð1= ffiffiffi

2
p ÞðψA

n ;ψB
n ÞT , where ψA

n and ψB
n

are normalized vectors that exist only in the A and B
subspaces, respectively. Under chiral symmetry, every eigen-
state jψni with energy ϵn has a chiral partner state Πjψni ¼
ð1= ffiffiffi

2
p ÞðψA

n ;−ψB
n ÞT with energy −ϵn. EvaluatingH2jψni ¼

ϵ2njψni leads to the eigenvalue problems ðhh†ÞψA
n ¼ ϵ2nψ

A
n

and ðh†hÞψB
n ¼ ϵ2nψ

B
n , so that ψA

n and ψB
n can be easily

obtained by diagonalizing hh† or h†h, respectively. This
structure is reflected in the singular value decomposition
(SVD) of h by writing

h ¼ UAΣU
†
B; ð2Þ

where US , for S ¼ A, B, is a unitary matrix representing the
space spanned by fψS

ng, i.e.,US ¼ ðψS
1 ;ψ

S
2 ;…;ψS

NS
Þ, andΣ

is a diagonal matrix containing the singular values. Using
this decomposition, it follows that hh† ¼ UAΣ2U†

A and
h†h ¼ UBΣ2U†

B, so that the squared energies fϵ2ng corre-
spond to the squared singular values in Σ2.
The SVD decomposition (2) allows an explicit flattening

of the Hamiltonian by defining the unitary matrix
q ¼ UAU

†
B. The winding number of a Bloch Hamiltonian

in 1D parametrized by the crystal momentum k is then given
by Nx ¼ ð1=2πiÞ RBZ Tr½qðkÞ†∂kqðkÞ� and is a topological
invariant associated with the homotopy classes in
π1½UðnÞ� ¼ Z.
In the absence of periodicity, k is not a good quantum

number and the winding number loses its meaning.
However, it is still possible to find real space topological

invariants of chiral-symmetric 1D systems (equivalent to
the winding number when periodicity is restored), which
have allowed for the study of the effects of disorder [56–
58]. Specifically, the 1D winding number is equivalent to
the real space index Nx ¼ ð1=2πiÞTr logðP̄A

x P̄
B†
x Þ ∈ Z,

where P̄S
x ¼ U†

SP
S
xUS is the sublattice dipole operator

projected into the spaces US, for S ¼ A, B [57,59].
Here, PS

x is defined using the dipole moment operator
for periodic systems [60], but restricted to a single sub-
lattice, PS

x ¼ P
R;α∈S jR; αiExpð−i2πR=LÞhR; αj, where

the 1D crystal has L unit cells, jR; αi ¼ c†R;αj0i, and c†R;α
creates an electron at orbital α of unit cell R.
The MCNs for higher-order topological phases with

chiral symmetry are based on extensions of this formulation
of real space indices to 2D and 3D. Consider a lattice in 2D
(3D) with Lj unit cells along direction j ¼ x, y (j ¼ x, y,
and z). Each unit cell is labeled by R ¼ ðx; yÞ [R ¼
ðx; y; zÞ] and has NT orbitals (or, more generally, NT
internal degrees or freedom). To build the topological
indices for chiral-symmetric higher-order topological
phases we define the following sublattice multipole
moment operators:

QS
xy ¼

X
R;α∈S

jR; αiExp
�
−i

2πxy
LxLy

�
hR; αj ð3Þ

OS
xyz ¼

X
R;α∈S

jR; αiExp
�
−i

2πxyz
LxLyLz

�
hR; αj; ð4Þ

for 2D and 3D lattices, respectively. These operators
resemble those associated with quadrupole and octupole
moments [61–63], but are only defined over each sublattice
S ¼ A, B, instead of across the entire system.
We claim that the integer invariants for chiral-symmetric

second-order topological phases in 2D and third-order
topological phases in 3D are, respectively,

Nxy ¼
1

2πi
Tr log ðQ̄A

xyQ̄
B†
xy Þ ∈ Z; ð5Þ

Nxyz ¼
1

2πi
Tr log ðŌA

xyzŌ
B†
xyzÞ ∈ Z; ð6Þ

where Q̄S
xy ¼ U†

SQ
S
xyUS and ŌS

xyz ¼ U†
SO

S
xyzUS, for

S ¼ A, B, are the sublattice multipole moment operators
projected into the spaces US. To demonstrate that Eqs. (5)
and (6) are the invariants for chiral-symmetric higher-order
topological phases, one must show that these invariants are
strictly quantized, that they predict the number of topo-
logically protected corner states at each corner of the
lattice, and that phases with different MCNs are separated
from one another by phase transitions that close the
energy gap.
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To prove that the invariants (5) and (6) are strictly
quantized, notice that they take the form N ¼
ð1=2πiÞTr logðU†

AMAUAU
†
BM

†
BUBÞ, where MS (for S ¼

A, B) is QS
xy in 2D or OS

xyz in 3D. Since the matrices MS

and US are unitary, we have detðU†
AMAUAU

†
BM

†
BUBÞ ¼

detðMAM
†
BÞ ¼ 1, where the last step follows if the two

sublattices have (i) equal number of degrees of freedom
in each unit cell and (ii) the same number of unit cells.
Under these conditions, tracing the logarithm of
U†

AMAUAU
†
BM

†
BUB will necessarily give a phase that is a

multiple of 2πi; i.e., it will be of the form 2πiN, withN ∈ Z.
This integer N is the topological invariant. Exploiting this
structure of the invariants, Eqs. (5) and (6) can also bewritten
in the form of a Bott index [64,65], see Supplemental
Material [59].
We now illustrate some of the topological phases with

nonzero values of Nxy and demonstrate that this invariant
corresponds to the number of corner-localized states in
each corner. Consider the quadrupole topological insulator
(QTI) [1] with additional long-range hopping terms. The
Bloch Hamiltonian for the QTI has the form of Eq. (1) with
the off-diagonal matrix

hQTIðkÞ ¼
�−vx − w1;xe−ikx vy þ w1;yeiky

vy þ w1;ye−iky vx þ w1;xeikx

�
; ð7Þ

where vx=y and w1;x=y are the nearest-neighbor hoppings
within a unit cell and between adjacent unit cells, respec-
tively (generally, we allow for different values of these
hoppings in the x and y directions). Adding to
this model, we also allow for straight long-range (SLR)
hoppings,

hSLRðkÞ ¼
XM
m>1

�−wm;xe−imkx wm;yeimky

wm;ye−imky wm;xeimkx

�
; ð8Þ

where M determines the maximum long-range hopping, as
well as diagonal long-range (DLR) hoppings,

hDLRðkÞ ¼ 2wD

�
e−ikx cosðkyÞ −eiky cosðkxÞ
−e−iky cosðkxÞ −eikx cosðkyÞ

�
: ð9Þ

Here, wm;x=y are the long-range hoppings among the mth
nearest-neighbor unit cells in the horizontal and vertical
directions, respectively, and wD are hoppings among
nearest-neighbor unit cells along the diagonal directions.
All the terms preserve chiral symmetry and the diagonal
terms (9) break separability, making it impossible to write
the full Hamiltonian as HðkÞ ¼ HxðkxÞ þHyðkyÞ. In
writing this Hamiltonian, we thread a π flux through each
plaquette of the system, which is implemented via the
specific choice of gauge directly written in Eqs. (7)–(9) and
shown in Fig. 1(a).

First, consider a chiral andC4-symmetric, long-range QTI
model with wm>2 ¼ 0 and wD ¼ 0. For wm=v < 1, this
system possesses a bulk band gap around zero energy and
both the quadrupole moment qxy [1] and the quadrupole
winding number Nxy [Eq. (5)] identify it as trivial (qxy ¼ 0,
Nxy ¼ 0), Fig. 1(b). Starting from this phase and increasing
w1=v, a bulk band-gap-closing phase transition occurs, after
which both topological indices now show that this system is
in a nontrivial phase (qxy ¼ 1=2, Nxy ¼ 1). With open
boundaries, this phase possesses a single zero-energy state
localized to each of its corners, Fig. 1(c). This is the
previously known QTI phase [1]. However, when the
long-range hopping w2=v is increased, a separate bulk
band-gap-closing phase transition occurs that separates

(a)

(c)

(d)

(b)

FIG. 1. (a) Schematic depicting the tight-binding model used.
Not all non-nearest-neighbor hoppings are shown for clarity. All
purple hoppings are multiplied by −1 such that each plaquette has
a uniform flux of π. (b) Phase diagram indicating the quadrupole
chiral number Nxy and the quadrupole moment qxy for a C4v-
symmetric system. Here, wm>2 ¼ 0 and wD ¼ 0. Different phases
are separated by gray lines of critical points where the bulk band
gap closes. (c),(d) Density of states (left) and local density of
states at zero energy (right) for the Nxy ¼ 1 phase (c) and the
Nxy ¼ 4 phase (d). On the right sides of (c) and (d), red and blue
colors indicate support over the A and B sublattices, respectively.
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either the Nxy ¼ 0 phase or the Nxy ¼ 1 phase from another
nontrivial phasewithNxy ¼ 4, butwithqxy ¼ 0. Simulations
of the open system reveal that each corner of the lattice in this
phase possesses four degenerate states with ϵ ¼ 0 and that all
such states within a corner exist only on a single sublattice of
the system, see Fig. 1(d) and Fig. S2 in the Supplemental
Material [59].
Since all of the zero-energy states within a corner occupy

the same sublattice, they have the same chiral charge
Πjψ corneri ¼ �jψ corneri and, thus, cannot pair to hybridize
away from zero energy as long as chiral symmetry is
preserved.
Not only is the Nxy ¼ 4 phase not captured by the

quadrupole index, but more generally, it lies beyond the
framework of induced band representations [66,67].
Consequently, topological indices based on calculating
the representations of the bulk bands at high-symmetry
points of the Brillouin zone will fail to find this phase, as
the representations of the lowest two bands at all of the
high-symmetry points are identical in the Nxy ¼ 4 phase,
leading to trivial symmetry indicator invariants, see
Supplemental Material [59].
Phase transitions between phases with different MCNs

need not close the bulk band gap but, at a minimum, must
close some lower-dimensional edge or surface band gap.
HOTPs with this property are known as boundary-
obstructed topological phases [42]. This property remains
true even in the presence of C4 symmetry, which renders
the QTI phase bulk obstructed. For example, consider
adding diagonal long-range hoppings to this model,
wD=v ¼ 0.5 [Eq. (9)], which preserve chiral and C4

symmetries but break separability. As can be seen in
Fig. 2(a), the Nxy ¼ −1 and Nxy ¼ 3 phases each have a
phase boundary in which the bulk band gap closes and
boundaries with other phases where only the edge band gap
closes. Both of these types of boundaries can be explicitly
seen in the density of states across these phase transitions,
Fig. 2(b). For all of the different phases identified in Fig. 2(a),
the number of states localized in each corner of the system is

equal to jNxyj and the sublattice over which the corner states
are supported is given by sgnðNxyÞ. Thus, for example, the
Nxy ¼ −1 phase in Fig. 2(a) indicates that the system
possesses one state localized in each corner with support
only on the opposite sublattice when compared with those in
phaseswithNxy > 0, see SupplementalMaterial [59]. In 3D,
chiral-symmetric higher-order phases are characterized by
distinct integer values of Eq. (6), which indicate the number
of degenerate states localized at each corner in the 3D
structure.
Even though the phases shown in Figs. 1 and 2 preserve

crystalline symmetries, phases with nonzero MCNs are
robust in the presence of short-range correlated disorder
that breaks crystalline symmetries. To demonstrate this, we
add disorder to the nearest-neighbor hopping coefficients of
this model. In particular, we consider a uniform lattice with
C4 symmetry, whose disorder then breaks all spatial sym-
metries, as well as time-reversal symmetry, by taking values

vij → vij þ ðW=
ffiffiffi
2

p ÞðξðReÞ0;ij þ iξðImÞ
0;ij Þ and w1;ij → w1;ijþ

ðW=2
ffiffiffi
2

p ÞðξðReÞ1;ij þ iξðImÞ
1;ij Þ, which for sufficiently large dis-

order strengthW causes a phase transition into a trivial phase.
Here, ξ ∈ ½−1; 1� are uniformly distributed random numbers
and vij and w1;ij are the hopping strengths between neigh-
boring lattice sites i, j within the same unit cell and between
adjacent unit cells, respectively. As can be seen in Fig. 3, an
Nxy ¼ 4 phase remains strictly quantized until a transition
drives the system into a trivial phase with Nxy ¼ 0 when the
disorder becomes sufficiently strong. This transition coin-
cides with both bulk and edge band gap closings (up to finite
size effects, see Supplemental Material [59]).
Recently, several studies have shown that chiral sym-

metry alone quantizes quadrupole and octupole moments in
insulators [68–70]. Our results show that protection solely
due to chiral symmetry also applies to the larger family of
topological phases protected by MCNs. This must be the
case as systems with different MCNs also possess different

(a) (b)

FIG. 2. (a) Phase diagram of the Nxy phases for a C4v-
symmetric, separability-broken system with wD=v ¼ 0.5 and
wm>2 ¼ 0. Bulk-obstructed phase transitions are shown in gray,
while boundary-obstructed phase transitions are shown in lime.
(b) Density of states for this system for fixed w1=v ¼ 0.8,
indicated as the red line in (a).

(a) (b)

FIG. 3. Numerically calculated Nxy (a), edge band gap (b), and
bulk band gap (inset), as a function of disorder strength W=v for
100 independent realizations for the disorder on a 40 × 40 square
lattice whose underlying ordered system has w1=v ¼ 1,
w2=v ¼ 4, and wm>2 ¼ wD ¼ 0. The shading of the points in
(a) is proportional to the number of disorder realizations that yield
that invariant. The solid line and shaded region show the average
of the plotted quantity and the region within 1 standard deviation
of the average, respectively.

PHYSICAL REVIEW LETTERS 128, 127601 (2022)

127601-4



numbers of topological zero-energy states at each corner;
thus, to transition between them, extended zero-energy
channels must exist through which some topological states
delocalize and hybridize away from zero energy. Such
channels are provided by bulk or boundary closings of the
energy gap.
Higher-order topological phases have been found in

bismuth [71] and Bi4Br4 [72]. More recently, the mech-
anisms for the protection and confinement of modes of
higher-order topology have found fertile ground in pho-
tonics, acoustics, and topoelectric circuits [48,50,73–81],
where they can be used to create robust cavities [82,83] and
lasers [84,85]. In fact, since chiral-symmetric HOTPs with
large MCNs require increasingly stronger longer-range
hoppings, these phases may be hard to attain in solid-state
systems, where the electron’s hoppings attenuate with
separation. However, these phases are readily accessible
in microwave photonic resonator arrays [48,49], topo-
electric circuits [50], or sonic crystals [51], all of which
can implement deformable lattice sites and couplers, which
enables separating the geometric configuration of the lattice
from the strength of the couplings of resonating states, thus
easily achieving long-range couplings [49,51]. Another
candidate platform is ultracold atoms in optical lattices,
where the realization synthetic gauge fields [52–54] and
modulation of hopping terms [52] in 2D has been exper-
imentally shown. Adding long-range hoppings to this
platform has been long sought after, and a recent a proposal
has been put forward [55] that could give this platform
access to the phases we present.
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