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Deep theoretical understanding of the electrical response of Josephson junctions is indispensable
regarding both recent discoveries of new kinds of superconductivity and technological advances such as
superconducting quantum computers. Here, we study the microscopic theory of the dc current-biased I-V
characteristics of Josephson tunnel junctions. We derive an analytical formula of the I-V characteristics of
generic junctions. We identify subharmonics of the I-V characteristics and their underlying mechanism as
the feedback effect of intrinsic ac currents generated by voltage pulses in the past. We apply our theory to
analytically solve the Werthamer equation and describe various dc current-biased I-V characteristics as a
function of softening of the superconducting gap. Strikingly, we identify voltage staircases of the I-V
characteristics in a genuine Josephson junction without ac current bias or qubit dynamics. Our general
analytical formalism opens new avenues for a microscopic understanding of I-V characteristics of
Josephson junctions that have been limited to phenomenological models so far.
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Microscopic theories of Josephson tunnel junctions were
established at the early stages of the discovery of the
Josephson effect [1–5]. For the dc voltage-biased junctions
yielding intriguing phenomena such as multiple Andreev
reflections [2,6–10], the I-V characteristics can be well
understood with the simple equation of motion of the
superconducting phase difference ϕðtÞ with _ϕðtÞ ¼ 2eV=ℏ
at voltage bias V. However, dc current-biased junctions are
governed by a nonlinear and nonlocal-in-time integro-
differential equation, and a microscopic theory of the dc
current-biased I-V characteristics of Josephson junctions
requires us to solve the complex dynamics of ϕðtÞ.
While the I-V characteristics of dc current-biased

Josephson junctions are widely examined experimentally,
its theoretical analysis has been limited to phenomenologi-
cal theories [11–14], adiabatic approximations [5,14], or
numerical approaches [15–17], in which several drawbacks
are faced. The analytical theories on the I-V characteristics
are typically based on reducing the nonlocal-in-time
integro-differential governing equation of ϕðtÞ into a
local-in-time differential equation. However, those theories,
especially at low temperature, are self-consistent only for
zero voltage V ¼ 0 or in the Ohmic regime V ≫ IcRn. The
inconsistency of the analytical theories at intermediate
voltages, 0 < V < IcRn, is related to the fast dynamics
of ϕðtÞ resulting in voltage pulses [18]. These voltage
pulses are inevitable due to the nonlinear nature of the
supercurrent [19]. While numerical approaches have been
successfully implemented in the frequency domain, they
have mainly been performed for conventional BCS super-
conductors. Thus, it is imperative to put forward a rigorous

analytical theory, which is consistent and generally
applicable to various types of current-biased Josephson
junctions.
In this Letter, we study the microscopic theory of dc

current-biased I-V characteristics of generic Josephson
tunnel junctions. The gist of our approach is to analyze
the general behavior of the superconducting phase ϕðtÞ
generated by successive voltage pulses in the time domain.
With this approach, we show that the voltage pulses
dynamically modulate the tilted washboard potential in
the RSJ model. This viewpoint provides us with a clear
understanding of the complex dynamics of ϕðtÞ. Focusing
on an intermediate voltage strength across the junction, we
find that the retarded response of the Josephson junctions is
decisive for the I-V characteristics. This enables us to
obtain an analytical formula of the I-V characteristics for
general memory kernels in arbitrary Josephson tunnel
junctions.
We apply our theory to the seminal example of the

Werthamer equation including smearing of the quasiparti-
cle density of states (DOS). We emphasize the validity of
our approach by a convincing agreement between numerics
and our analytical formula. If the smearing is small, we
predict voltage staircases in dc current-biased I-V charac-
teristics resembling Shapiro steps that occur if an additional
ac current bias is applied to the junction. Finally, we show
that a substantial smearing of the DOS can justify the
validity of the RSJ model at zero temperature but with
hystereses due to nonequilibrium Josephson effects. Both
voltage staircases and hystereses are experimentally
observed in high-quality Josephson junctions [20–24].
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In the presence of a qubit formed in the junction, voltage
staircases and hystereses have recently been predicted in
the dc current-biased case as well [25–27]. In a genuine
Josephson junction, this effect is not yet understood but
explained by us below.
Dynamical washboard potential model.—The micro-

scopic theory of Josephson tunnel junctions was estab-
lished within the tunneling Hamiltonian formalism [1–3]
and developed to relate current and voltage across the
junction to an arbitrary superconducting phase difference
ϕðtÞ [4,5]. For a dc current bias I, the dynamics of ϕðtÞ at
zero temperature follows the nonlinear integro-differential
equation,

I ¼ ℏ
2eRn

dϕ
dt

þ
Z

t

−∞
dt0Knðt − t0Þ sinϕðtÞ − ϕðt0Þ

2

þ
Z

t

−∞
dt0Ksðt − t0Þ sinϕðtÞ þ ϕðt0Þ

2
: ð1Þ

The first term on the right-hand side is the instantaneous
Ohmic response of the quasiparticle current. The second
term is the retarded response of the quasiparticle current.
The third term is the retarded response of the supercurrent.
The retarded responses stem from the frequency-dependent
tunneling currents caused by the particular gap structures
of given superconducting electrodes [28,29]. Memory
kernels Kn;sðtÞ describe retarded responses by coupling
the past dynamics of ϕðt0Þ at t0 to ϕðtÞ at the present time
t > t0. The dynamics of ϕðtÞ determines the dc voltage
drop V ≡ limt→∞ð1=tÞ

R
t
0 dt

0vðt0Þ across the junction with
vðtÞ ¼ ðℏ=2eÞðdϕ=dtÞ. Note that Eq. (1) has periodic
solutions with the time period τ ¼ πℏ=ðeVÞ satisfying
ϕðtþ τÞ ¼ ϕðtÞ þ 2π [30].
We recast Eq. (1) into a novel form of the dynamical

washboard potential model with nonequilibrium modula-
tions of certain parameters,

I ¼ ℏ
2eRn

dϕ
dt

þ JðtÞ sin½ϕðtÞ − ζðtÞ� þ SðtÞ: ð2Þ

Because of the nonlocality-in time of Eq. (1), the phase
difference in time ϕðtÞ − ϕðt0Þ causes the nonequilibrium
modulations Ineqs;n ðtÞ≡ R

t
−∞ dt0Ks;nðt − t0Þeif½ϕðtÞ−ϕðt0Þ�=2g.

JðtÞ and ζðtÞ are, respectively, amplitude and argument
of the nonequilibrium modulations of the supercurrent
Ineqs ðtÞ, while SðtÞ is the imaginary part of the quasiparticle
current Ineqn ðtÞ. The reformulation into Eq. (2) enables us to
develop a qualitative analysis using the mechanical analog
of the so-called phase particle in a tilted washboard
potential Uðϕ; tÞ ¼ ½SðtÞ − I�ϕ − JðtÞ cos½ϕ − ζðtÞ� and a
quantitative analysis employing an iterative approach.
Qualitative analysis.—The mechanical analog of Eq. (2)

allows a qualitative analysis of ϕðtÞ without seeking the
exact solution. When Ic > I, the dynamics becomes sta-
tionary with ϕðtÞ − ϕðt0Þ ¼ 0 converging to the fixed point

ϕ× ¼ arcsinðI=IcÞ. This results in V ¼ 0 and Ic ¼R∞
0 dtKsðtÞ. When Ic < I, ϕðtÞ evolves in the absence
of a fixed point. Then, the phase difference in time
modulates Uðϕ; tÞ. To analyze this complex behavior, we
add factors e−t=tm to the memory kernels Ks;nðtÞ by hand.
These factors introduce a finite memory time tm. We
qualitatively analyze the influence of the past dynamics
on Uðϕ; tÞ and ϕðtÞ, starting with an exactly solvable limit
tm → 0 (no memory). Subsequently, we turn on the non-
locality-in-time by increasing tm. In the end, this gives rise
to a qualitative understanding of the I-V characteristics
when Ic < I.
The limit tm → 0 yields the RSJ model where Eq. (2) be-

comes local-in-time and exactly solvable: ϕðtÞ → ϕ0ðtÞ ¼
2 arctanfðIc=IÞ þ ½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 − I2c

p
Þ=I� tan½ðeRnt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 − I2c

p
Þ=ℏ�g

and Uðϕ; tÞ → U0ðϕÞ ¼ −Iϕ − Ic cosϕ with J0ðtÞ ¼ Ic
and ζ0ðtÞ ¼ S0ðtÞ ¼ 0, yielding the I-V characteristics
V ¼ Rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 − I2c

p
. In the low voltage regime V ≪ IcRn,

ϕ0ðtÞ shows an abrupt phase winding by 2π for every
period as a stepwise jump, generating sharp voltage pulses
with maxfvðtÞg ∼ IcRn and time width δτ ∼ ℏ=ðeIcRnÞ.
Next, we consider the memory effect with finite tm < τ

and analyze the behavior of the tilted washboard potential
Uðϕ; tÞ. We begin this analysis for pedagogical reasons by
focusing on a single voltage pulse of ϕ0ðtÞ appearing at
t ¼ 0 with a short time width δτ ≪ τ. Then, sufficiently
long after or before the voltage pulse, Uðϕ; tÞ hardly varies
from U0ðϕÞ owing to the finite memory time tm and cau-
sality. However, in the vicinity of the voltage pulse 0 <
t < tm, we argue that the abrupt 2π phase winding modu-
lates Uðϕ; tÞ with Ineqs;n ðtÞ ≈

R
0
−∞ dt0Ks;nðt − t0Þe½ðt0−tÞ=tm� −R

t
0 dt

0Kn;sðt − t0Þe½ðt0−tÞ=tm� using the expression below
Eq. (2) [31]. The nonequilibrium modulations of Uðϕ; tÞ
are determined by the memory kernels Kn;sðtÞ via
JðtÞ ≈ Ic − 2

R tþtm
t dt̃Ksðt̃Þe−t̃=tm , ζðtÞ ≈KsðtÞe−t=tmδτ=Ic,

and SðtÞ ≈ −KnðtÞe−t=tmδτ. Hence, Uðϕ; tÞ oscillates
around U0ðϕÞ. We compare our estimation of JðtÞ with
exact numerical calculations for a tunnel junction coupling
two BCS superconductors in Fig. 1. For this type of
junction, Kn;sðtÞ sinusoidally oscillate with the time scale
ℏ=ð2ΔÞ due to energy-time uncertainty, and Kn;sðtÞ → 0

for t → ∞ due to causality [32].
We can derive the general behavior of ϕðtÞ from the

mechanical analogue of a phase particle in presence of a
finite memory time tm < τ. According to the modulation of
Uðϕ; tÞ around U0ðϕÞ, the phase particle exhibits back-and-
forth motion. This can be described by an additional
function δϕðtÞ, which oscillates around zero. After several
back-and-forth motions, the phase particle ϕðtÞ eventually
advances by 2π due to the lack of a fixed point for Ic < I.
We replace ϕðtÞ → ϕ0ðtÞ þ δϕðtÞ including a memory
effect. As we increase the nonlocality in time further
τ < tm, more voltage pulses in the past contribute to the
modulation of Uðϕ; tÞ.
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We develop the following picture of the memory effect
on the I-V characteristics: I corresponds to the tilting of the
dynamical washboard potential and V to the inverse of the
time period τ ¼ πℏ=ðeVÞ satisfying ϕðtþ τÞ ¼ ϕðtÞ þ 2π.
Let us assume that a static washboard potential U0ðϕÞ
should be tilted by I0 in order to generate a voltage drop
V ¼ πℏ=ðeτÞ. Then, the memory effect demands larger
tilting I of the dynamical washboard potential Uðϕ; tÞ than
I0, since the memory effect makes it more difficult for the
phase particle to advance by 2π because of the back-and-
forth motion. Hence, the memory effect changes the I-V
characteristics, accordingly.
Quantitative analysis.—We now present an analytical

approach for the dc current-biased I-V characteristics of a
generic Josephson tunnel junction. The task is to calculate
the dc current-bias I generating the dc voltage drop V. We
approach this task by an iterative solution of Eq. (2). The
Nth iteration step begins with calculating the dynamical
modulations of UNðϕ; tÞ using the previous iterative sol-
ution ϕN−1ðtÞ with the period τ ¼ πℏ=ðeVÞ. The Nth
iterative solution ϕNðtÞ is obtained by solving Eq. (2) with
UNðϕ; tÞ. Those iterations are repeated until the solution
converges. Intriguingly, our quantitative analysis shows
that the first iteration step is sufficient to obtain the I-V
characteristics to a good accuracy.
The reason for the power of the first iteration step is

related to a clever choice of the initial ansatz ϕ0ðtÞ ¼
2 arctanf½IcRn þ V tanðeVt=ℏÞ�=½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIcRnÞ2 þ V2

p
�g, inspi-

red by the functional form of the solution of the RSJ model.
Updating J0ðtÞ ¼ Ic, ζ0ðtÞ ¼ S0ðtÞ ¼ 0 into the dynamical
modulations J1ðtÞ, ζ1ðtÞ, S1ðtÞ by inserting ϕ0ðtÞ into the
expressions defined below Eq. (2), we take the memory
effect into account. The first iterative solution ϕ1ðtÞ is
obtained from

I ¼ ℏ
2eRn

dϕ1

dt
þ J1ðtÞ sin½ϕ1ðtÞ − ζ1ðtÞ� þ S1ðtÞ: ð3Þ

ϕ1ðtÞ exhibits back-and-forth motion with the correction
δϕ1ðtÞ ¼ ϕ1ðtÞ − ϕ0ðtÞ. We reduce Eq. (3) into the equa-
tion of motion of δϕ1ðtÞ in the regime J1ðtÞ=Ic − 1, ζ1ðtÞ,
S1ðtÞ=Ic ≪ 1. This implies that U1ðϕ; tÞ oscillates weakly
around U0ðϕÞ. The reduced equation of motion describes
the dynamics of δϕ1ðtÞ in a different washboard potential
with the height Ic but dynamically tilted by ½Ic − J1ðtÞ�×
sinϕ0ðtÞ − S1ðtÞ. Since the tilting is much smaller than its
height, δϕðtÞ lacks the 2π phase winding and shows weak
oscillations around zero with a small dc component. The
iteration steps can be repeated, but the corrections due to
additional small oscillations are negligible.
This motivates us to use the first iteration to calculate the

dc current-bias I generating the dc voltage drop V and
analyze how well it works. We put ϕðtÞ ¼ ϕ0ðtÞ þ δϕðtÞ
with a small oscillating correction δϕðtÞ into Eq. (2), letting
ϕðtÞ and ϕ0ðtÞ share the period τ ¼ πℏ=ðeVÞ producing the
dc voltage drop V with δϕðtþ τÞ ¼ δϕðtÞ. Collecting
terms containing other than ϕ0ðtÞ as O½δϕðtÞ�, we rewrite
Eq. (2) as

I¼ ℏ
2eRn

dϕ0

dt
þJ1ðtÞsin½ϕ0ðtÞ−ζ1ðtÞ�þS1ðtÞþO½δϕðtÞ�:

ð4Þ

To evaluate the dc current-bias I, we take the time average
of Eq. (4) over the period τ ¼ πℏ=ðeVÞ. Then, the time
integral of O½δϕðtÞ� contains an integrand multiplied by
δϕðtÞ. Using δϕðtþ τÞ ¼ δϕðtÞ, we find

R
τ
0 dtfðtÞδϕðtÞ≲

ðAm=2mπÞ R τ
0 dtfðtÞ, wherem and Am are, respectively, the

number of back-and-forth motions within a period and the
amplitude of δϕðtÞ. Since Am is small and m > 1, we find
that the time average of O½δϕðtÞ� becomes negligibly
smaller than Ic. Thus, we obtain this equation for the
I-V characteristics

I ≈
V
Rn

þ J1ðtÞ sin½ϕ0ðtÞ − ζ1ðtÞ� þ S1ðtÞ; ð5Þ

where fðtÞ≡ ð1=τÞ R τ
0 dtfðtÞ.

Focusing on the low-voltage regime V < IcRn, by which
we can approximate ϕ0ðtÞ, we evaluate the time averages in
Eq. (5) further. This yields an analytical formula for the dc
current-biased I-V characteristics of Josephson tunnel
junctions with generic memory kernels,

I ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2c þ

�
V
Rn

�
2

s
þ ℏ
eIcRn

X∞
n¼0

ð−1ÞnKn

�
tþ n

πℏ
eV

�

− 2
X∞
n¼0

ð−1Þn
Z

−nπℏeV

−∞
dt0Ksðt − t0Þ: ð6Þ

J(t)

J/Ic

t= 0 /2/2

(a)

0

(b)

(c)

(d)

Ic

0
Ic

0
Ic

0
t= 0 /2/2

J , 0.01

J , 0.25

J , 0.5

FIG. 1. Analytical estimation and numerical calculation of the
modulating height JðtÞ of the dynamical washboard potential
Uðϕ; tÞ. We depict a numerically calculated color map of JðtÞ
with respect to the memory time tm in (a). The time ranges where
the voltage pulse modulates Uðϕ; tÞ are indicated as a guide for
the eye (dashed lines). In the right panels, we present plots of JðtÞ
for several tm for a better comparison of analytics (dashed lines)
to numerics (solid lines). The height JðtÞ of Uðϕ; tÞ oscillates
around Ic. We use ϕ0ðtÞ exhibiting δτ=τ ¼ 0.05 and the memory
kernels from Ref. [32]. Note that Uðϕ; tþ τÞ ¼ Uðϕ; tÞ and
ϕðtþ τÞ ¼ ϕðtÞ þ 2π [30].
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This equation is the first main result of our work. The
additional contributions of the second and third terms in
Eq. (6) stem from the memory effects of the quasiparticle
current and supercurrent at the current bias. Since memory
kernels contain the retarded dynamics of electric fields
from voltage pulses, the time-averaged memory kernels are
the central physical quantities determining the I-V char-
acteristics at low voltages. The summations signify the
influence of each voltage pulse in the past on the dynamical
washboard potential. We discuss the opposite limit, i.e., the
I-V characteristics of Josephson tunnel junctions in the
high-voltage regime IcRn < V, in the Supplemental
Material by employing Eq. (5) [33].
Werthamer equation with smeared DOS.—We exemplify

the validity of the analytical formula, Eq. (6), by looking at
a concrete example of a Josephson tunnel junction. The
junction consists of two BCS superconductors with a small
junction cross section. The Werthamer equation describes
the Josephson effect by taking into account the memory
kernels of the junction in Eq. (1). It shows good agreement
with experiments, when smearing of the superconducting
gap is considered [17,36]. The smearing appears in realistic
situations due to various mechanisms [36–41]. Considering
the smeared DOS, we derive an analytical formula of the
I-V characteristics and compare it to numerics [15–17]. We
show below that different types of the I-V characteristics
are interpolated within our theoretical framework as the
smearing increases.
We take into account the smeared DOS with an

energy broadening Γ to describe BCS superconductors.
This gives rise to memory kernels KsðtÞ ¼
−πΔ2e−Γt=ℏJ0ðtΔ=ℏÞY0ðtΔ=ℏÞ=ðℏeRnÞ and KnðtÞ ¼
πΔ2e−Γt=ℏJ1ðtΔ=ℏÞY1ðtΔ=ℏÞ=ðℏeRnÞ at zero temperature.
Jn and Yn are Bessel functions of first and second kinds,
respectively. Symmetric superconducting gaps Δ are con-
sidered for both superconductors for simplicity. Putting the
above memory kernels into Eq. (6), we derive the dc
current-biased I-V characteristics in the low-voltage regime
in analytical form, which is the second main result of our
work,

I
Ic

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
V

IcRn

�
2

s
−

4V
π2Vg

þ
4 arctanð sin

πVg
V

eπγVg=Vþcos
πVg
V

Þ
π2ð1þ γ2Þ½Kð−γ2Þ�2

V2

V2
g

−
4 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e−

πγVg
V ðcosh πγVg

V þ cos πVg

V Þ
q

π2ð1þ γ2ÞKð−γ2Þ
V2

V2
g
; ð7Þ

where γ ¼ Γ=ð2ΔÞ and Vg ¼ 2Δ=e. The critical current
Ic ¼ Δ=ðeRnÞKð−γ2Þ decreases as the smearing energy
increases. KðxÞ is the complete elliptic integral of the first
kind. We note that the last two terms on the right-hand
side in Eq. (7) stem from the retarded responses to voltage
pulses in the past. The third term corresponds to the step-
wise increasing quasiparticle current by photon-assisted

tunneling [15]. The fourth term describes the subharmonic
peaks of the supercurrent by self-coupling [4,15].
We begin with the casewithout smearing, which has been

studied extensively with numerical approaches [15,16].
When Γ ¼ 0, Eq. (7) reproduces the logarithmic diver-
gence in the subharmonics at voltages Vp ¼ Vg=ð2p − 1Þ
(p ¼ 1; 2;…) and IcRn ¼ πΔ=ð2eÞ [4,15]. We compare the
analytical formulawith numerics in Fig. 2(a). Alongwith the
notable agreement in both calculations, our analytical
approach clarifies that the logarithmic divergence stems
from the infinitely large number of voltage pulses due to the
algebraically decaying memory kernels Kn;sðtÞ ∼ 1=t for
Γ ¼ 0. This behavior suggests that the logarithmic diver-
gence is washed out and limited by a finite measurement
time in experiments.
For small smearing Γ ≪ Δ, Eq. (7) implies the emer-

gence of voltage staircases in the absence of ac current bias,
reported in recent experiments with high-quality Josephson
junctions [20–24]. Notably, it is theoretically suggested that
the dynamics of a qubit in junctions can replace the role of
the ac current bias employing the quantum RSJ model
[26,27]. However, our theoretical analysis shows that
voltage staircases can even appear in absence of both ac
current bias and qubit dynamics in the junction. We dis-
cover that the feedback effect modulates the washboard po-
tential dynamically with ½SðtÞ − I�ϕ − JðtÞ cos½ϕ − ζðtÞ�.
This feedback effect becomes most significant when
voltage pulses add constructively Vp ¼ Vg=ð2p − 1Þ
(p ¼ 1; 2;…). The resulting dynamical modulation causes
a similar behavior found in the quantum RSJ model with
qubit dynamics [25–27]. Then, the phase particle is trapped

FIG. 2. dc current-biased I-V characteristics based on the
Werthamer equation with smeared DOS NðEÞ. In (a), our
analytical result (solid line) is provided together with a numerical
calculation (red dots) using Eq. (1) without smearing. Analytical
calculations for Γ ≪ Δ and Γ ∼ Δ are shown in (b) and (c),
respectively. The voltage staircases become visible as peaks in the
color map of dI=dV in (d). V=Vg ¼ 1; 1=3; 1=5; 1=7 are indicated
with arrows from top to bottom. V ¼ Γ=e is drawn as a guide to
the eye (dashed line) and Ic0 ¼ πΔ=ð2eRnÞ. Insets: Quasiparticle
DOS NðEÞ corresponding to the chosen Γ in each panel [33].

PHYSICAL REVIEW LETTERS 128, 126801 (2022)

126801-4



against increased tilting by a current bias, which results in
rather flat voltage drops at Vp [see Figs. 2(b) and 2(d)].
Moreover, the comparison of the time scales of memory

kernels provides further understanding, for instance, related
to its oscillation period τΔ ¼ ℏ=ð2ΔÞ and decaying time
scale τΓ ¼ ℏ=Γ. The exponential decay with τΓ ¼ ℏ=Γ
explains the absence of the logarithmic divergence occur-
ring for Γ ¼ 0. The decaying time τΓ competes with the
period of voltage pulses τ ¼ πℏ=ðeVÞ, as less contributions
from the past add together at present with increasing period
τ between voltage pulses for a given τΓ. Consequently, the
voltage staircases appear approximately in the range Γ=e <
V < 2Δ=e [see Fig. 2(d)].
Finally, we consider the regime of large smearing

2Δ≲ Γ, at which the memory kernel shows overdamped
oscillations. Then, the contributions from retarded
responses, the last two terms in Eq. (7), become vanishingly
small, and the I-V characteristics at zero temperature
qualitatively coincides with the one from the RSJ model
[Fig. 2(c)]. However, we find that the nonequilibrium
Josephson effect causes additional hystereses in the I-V
characteristics. Eq. (7) yields the recapturing current Ir ¼
Ic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4½Kð−γ2Þ�2=π4

p
where the voltage drop vanishes at

backward current bias. The hysteresis emerges as our
theory can capture the quasiparticle excitations and stored
Josephson energy.
Summary.—We provide a generic theory of the dc

current-biased I-V characteristics applicable to various
types of Josephson tunnel junctions. In our theory, the
information of the junction is contained in memory kernels.
We derive an analytical formula which can be used as a
powerful fitting function to experiments under appropriate
conditions. In sharp contrast to the voltage-biased case,
where multiple Andreev reflections of quasiparticles are
responsible for subharmonics, we show that the super-
current can play a major role in the dc current-biased I-V
characteristics. Our analytical formula can be employed to
quantitatively evaluate the shape of the superconducting
gap. It also explains the hystereses experimentally observed
in low-dimensional Josephson junctions where the geo-
metric capacitance is negligibly small.
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