PHYSICAL REVIEW LETTERS 128, 125301 (2022)

Propagating Ferrodark Solitons in a Superfluid:
Exact Solutions and Anomalous Dynamics

Xiaoquan Yu

12" and P. B. Blakie®

'Graduate School of China Academy of Engineering Physics, Beijing 100193, China
2Department of Physics, Centre for Quantum Science, and Dodd-Walls Centre for Photonic and Quantum Technologies,
University of Otago, Dunedin 9016, New Zealand

® (Received 27 April 2021; revised 26 July 2021; accepted 1 February 2022; published 24 March 2022)

Exact propagating topological solitons are found in the easy-plane phase of ferromagnetic spin-1 Bose-
Einstein condensates, manifesting themselves as kinks in the transverse magnetization. Propagation is only
possible when the symmetry-breaking longitudinal magnetic field is applied. Such solitons have two types:
a low energy branch with positive inertial mass and a higher energy branch with negative inertial mass.
Both types become identical at the maximum speed, a new speed bound that is different from speed limits
set by the elementary excitations. The physical mass, which accounts for the number density dip, is
negative for both types. In a finite one-dimensional system subject to a linear potential, the soliton
undergoes oscillations caused by transitions between the two types occurring at the maximum speed.
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Introduction.—The inertial mass (or effective mass) of
emergent quasiparticles contains rich information on the
dynamics of quantum many body systems [1]. In quantum
fluids the inertial mass of a topological soliton is determined
by both the kinetic and interaction energies and is a key
quantity governing its dynamics. For instance, the one-
dimensional (1D) motion of a dark or gray soliton in a
superfluid (bosonic or fermionic) can be described by a
Newton equation with negative inertial mass [2], leading to
oscillations in a harmonic trap [2—4]. The sign of inertial
mass also signals the stability of the soliton in a system of
higher than one spatial dimension. Indeed, two- or three-
dimensional solitons with negative inertial mass typically
decay [5] due to the snake instability (growth of transverse
deformations) [6-8]. It is a rather general feature for solitons
in quantum fluids that the soliton energy decreases with
increasing velocity, giving rise to a negative inertial mass.
Relevant examples are dark or gray solitons in bosonic and
fermionic quantum gases [2], phase domain walls in binary
Bose-Einstein condensates (BECs) with strong coherent
coupling [9-12], magnetic solitons in both binary [15]
and antiferromagnetic spin-1 BECs [16,17]. A soliton with
positive inertial mass should be stable in higher dimensions
and exhibit anomalous dynamics.

In this Letter we report on the discovery of two types of
exact topological solitons that have positive and negative
inertial mass, respectively, occurring as kinks in the trans-
verse magnetization of a ferromagnetic spin-1 BEC. We
refer to them as ferrodark solitons (FDSs). In the zero
velocity limit the FDSs connect to the stationary magnetic
domain walls (MDWs) recently found in Ref. [18]. The
FDSs can only propagate at a finite speed in a longitudinal
magnetic field which provides a necessary condition for the
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motion, i.e., breaking the transverse magnetization con-
versation. In addition, the FDSs exhibit a number of other
novel features different from conventional solitons. When
traveling, the transverse magnetization is always zero in the
core of a FDS and hence there is no magnetic current. The
motion arises from a coupling between the magnetization
and nematic degrees of freedom caused by the magnetic
field. Interestingly, the moving speed is not limited by
group velocities of elementary excitations but has a new
speed bound, at which the two types of solitons become
identical. We study dynamics of the soliton in a hard-wall
trapped quasi-1D system with a superimposed linear
potential and find transitions between the two types via
internal spin currents, leading to an oscillatory motion.
While we focus on the exactly solvable case, FDSs exist
with the characteristic features revealed by the exact
solutions in the whole easy-plane phase.

Spin-1 BECs.—The Hamiltonian density of a spin-1
condensate reads

Ryl g g
H = I twl? + 2 Sy ? 7S2 , 1
sy T Wl SISyl gyt Siw. (1)
where the three-component wave function y =

(W1 wo.w_1)T describes the atomic hyperfine state
|F=1,m=+1,0,—1), M is the atomic mass, g, > 0 is
the density interaction strength, g, is the spin-dependent
interaction strength, S = (S,, S, ) with §;_, - being the
spin-1 matrices [19], and g denotes the quadratic Zeeman
energy. The spin-dependent interaction term allows for
spin-mixing collisions between m = 0 and m = =£1 atoms.
At the mean-field level, the dynamics of the field y is

governed by the Gross-Pitaevskii equations (GPEs)
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where Hy = -h*V?/2M + g,n, n,, = |y,[* and n=
> n,,. Spin-1 BECs support magnetic order [20-24],
quantified by the order parameter magnetization
F = y'Sy. This identifies ferromagnetic order |F| > 0
for g, < 0 (¥’Rb,’Li) and antiferromagnetic order F = 0
for g, > 0 (**Na).

Quadratic Zeeman driven propagating FDSs.—We con-
sider a uniform ferromagnetic (g; < 0) spin-1 BEC with
total number density n,. In the presence of a uniform
magnetic field along the z axis (0 < g < —2g,n,) [25], the
uniform ground state with zero longitudinal magnetization
(F,=n%, —n’, =0) is transversally magnetized (easy-
plane phase) [23,24], characterized by the transverse

magnetization F| = F, +iF, = \/8n% nfe™, where

nb, = (1-g)n,/4 and n} = n,(1+ §)/2 are the compo-
nent densities, and § = —¢q/(2g,n;). The SO(3) symmetry
is broken by the magnetic field and the system processes
the remnant SO(2) symmetry, parametrized by the rota-
tional angle about the z axis 7.

In the following we focus on a 1D system. In the easy
plane phase, exact transverse magnetic kink solutions of
Eq. (2) are found for a large spin-dependent interaction
strength g, = —¢,/2 and 0 < ¢ < —2g,n,,. There are two
types of such traveling kinks and the transverse magne-
tizations and the total number densities read

- MV? - Vi
A1) = mp = e (x—ﬂ,n ) )
where V is the moving velocity,
2h?
Al — . , (5)
M(gnnh - MV + Q)
and
Q = \/M?*V* + ¢* — 2g,Mn,V>. (6)

The above kink solutions are of Ising-type and connect
regions transversely magnetized in opposite directions [26].
Hereafter we refer to them as ferrodark solitons and the
minus (plus) sign in front of Q specifies type-I (II) FDS.
Unless specified, we choose 7 =0 for convenience.
Note that at the core x = V¢, F;" =0 while nM' #0.

The corresponding wave functions at the exactly solvable
region are shown in Table 1. Recently a ’Li spin-1 BEC has
been prepared in the strong spin interacting regime close to
the exactly solvable point [27].

The inequality Q% > 0 gives rise to the upper bound of
the traveling speed [30]

[gn / g\
V S 717 1 - 1 - (gnnb> = CFDS' (7)

The speed bound Eq. (7) is markedly different from the
group velocities of low-lying elementary excitations which
normally set the speed limits [31]. In the easy-plane phase,
the gap-less branches of the elementary excitations involve
spin waves of magnetization F (dominantly) and mixed
waves of F| and n, with group velocities at long wave-

q/(ZM) and Cmp = V nh(gn + gs‘)/M’
respectively [32]. Strikingly, for 1> g/g,n, > \/3/2,
CEDS > Cmp > C, implying that the FDSs can travel with
speed greater than ¢y, and cy,. This can happen because a
propagating FDS does not involve magnetic currents (see
below). Another conspicuous feature is that the soliton
profile does not vanish at V = cppg (see Fig. 1). The
velocity of gray solitons in scalar BECs is bounded by the
speed of sound, and at this velocity the soliton disappears
[31]. At the transition point ¢ = g, n,, the easy-plane phase
becomes unstable, signaled by the divergence of #'.
Similar to scalar gray solitons, the density dip of the
type-II FDS becomes shallower for greater velocities
[Fig. 1(d)]. In contrast, for the type-I FDS the density
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FIG. 1. (a)-(d) Transverse magnetizations and densities of

FDSs at g, = —g,/2 and g = 0.5 for different velocities:
V/ceps = 1 (solid line:); V/cgpg = 0.1 (dashed line). (e) Exci-
tation energies of FDSs as functions of V? evaluated from
Egs. (10) and (12) at § = 0.5. Here { = x — Vt. The inset shows
widths of FDSs, where the x axis is the same as in (e).
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dip behaves anomalously and deepens with increasing
velocity [Fig. 1(b)]. Crucially, at the maximum velocity
V = cpps, Q =0 and the two types of FDSs become
identical upon a U(l) gauge transformation, namely,
wl(x,t) = iy"(x, ) (see Table I).

When g — 0, cgpps — 0, implying that the propagation is
prohibited in the absence of a magnetic field, where the
conservation law of magnetization is restored. In this limit,
the two types become degenerate and are related via a
SO(3) spin rotation [18]. Clearly, a magnetic field does not
automatically induce motion. At V = 0 the FDSs recover
stationary MDWs at finite g [18,33].

Currents.—Moving FDSs involve nematic degrees
of freedom and internal spin currents. Since the magneti-
zation is zero at the core of a moving FDS, there is no
magnetic current, i.e., Jf =#/(2Mi)(y'S;Vy—H.c.)=0.
According to the continuity equation

OF;
i JF = K.
8t i 1244 (8)

the time evolution of magnetic domains enclosed by the
FDSs is governed by the source term K;, = (2¢/h)K;
[35,36], where K;, = >, €xN N; = 1// N,jl// is the
nematic tensor, N;; = (S;S;+5;S;)/2 and i.j € {x.y.z}.
For propagating FDSs kiz # 0 and k,-z —0asV—-0.At
q =0, K;; =0, and FDSs must stay still.

The continuity equations for particle number in
each spin state read Ony,/0t+V - -Ji +J110=0,
and  9ng/0t+V-Jo+>,_ 1 1Jo—m =0,  where

TABLE L.

Wave functions and currents of propagating FDSs in the exactly solvable regime (g, =
coefficients satisfy the following relations: k"ot = §M1 AL and (al!1)? 4
that stationary solutions are obtained when V — 0 [18,28]. Here { = x — V¢ and K? =

Jii0=n/(2Mi)(w%, o Vy o —H.c.) are the component
number current densities [37], and

Gs 1/, «
Jiim0 = —Joou1 = hi Kl//o)zllf—llllﬂ —He] (9)

are the internal spin currents, reflecting the internal coherent
spin exchange dynamics: [00) <> |+ 1)| — 1) [20-22].
Rewriting Eq. (9) in terms of wave function phases
(0+1,) and densities, we obtain J. ;o = (2nony,g,/h) x
sin[2(0+; — 6y)] which suggests an analogy to Josephson
currents [38,39]. It is important to note that these built-in
currents are invariant under SO(2) rotations (e~/*5:). Table I
shows the expressions of currents at the exactly solv-
able point.

Excitation energy and inertial mass.—The excitation
energy of FDSs can be obtained by evaluating the differ-
ence of grand canonical energies 6K = Kppg — K ;, where
Kyps = fdx(H[‘/’} —un), K, = fdx(H{Wg} — puny), gy is
the ground state wave function, and y = (g, + g,)n, + q/2
is the chemical potential. For type-I FDSs, we obtain

V2h(g,n, - MV? ~

0)*?
3g,vVM '

6K'(q,V?) =

(10)

Expanding Eq. (10) around V = 0, we have 5K'(g, V?) =
5K'(q,0) + ML V?/2 +0(V?),  where  &K'(q,0) =
V2h(guny, — q)*'*/(3g,n/M) and the inertial mass is

—g,/2, 0 < g < =2g,n,). The
(s H) + (x III) = 1. It is straightforward to check
> K2 is SO(2) rotationally invariant [29]. The

((SI II)

counter-propagating solution is y*(x, —t). Interestingly, J%, and J§ have opposite signs and f dxJ iy =0, forming a Josephson

vortexlike structure near the core of a FDS.

Type-1 Type-II
4 vl (x,1) = /ni' [t tanh (¢/£Y) + i8] ’//;tl /Bt + ik tanh (£/1))
wh (x. 1) \/> 6 + it tanh (¢/£Y)] f [ tanh (/") + i5"]

o = —/MV*(g,n, +q)/q(qg +MV? -
&'=\/(g-MV*-0)/2q
B =\ (qg+MV*+Q)/2q

0) aI

K ==/la(g — Q) = 9.Mn,V?]/q(q + MV* - Q)
B (2v2aynp nap ) sech ¢/ )
F =8/ M)sech? (¢ /£
Ty (n<ph) £ M )sech?(£/ 1)

—[4g,(8'" + p'a)8'f'n ) /]
x tanh (¢/£)sech? (£ /")

[ 4 g5 ( KII 5II
x tanh (¢/£W)sech?(¢/ M)

—V/MV* + q—0(g—MV*+ Q)/2\/gMV*(g,n, — MV* + Q)

M=—/(g+MV*-0)/2q
B =(g-MV*+0)/2q
= (g +MV?

(2ﬂq, [nOni1 511 /h) sech?(¢/ M)

(nf B R/ MM )sech? (¢ /£1)

- 0)Vq-MV* + 0/2\/qMV?(g,n, — MV? + Q)
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O5K! _ V2Mn(g,n, — q)**
OV |y 9nd

Ml =2 >0. (11

As ¢ -0, M}, > +oo and the FDS becomes infinitely
heavy, consistent with the absence of propagation at zero
magnetic field due to the conservation of magnetization [18].
In contrast to the normal behavior of gray solitons, the
excitation energy (5K') of the type-I FDS increases mono-
tonically with increasing V2 [Fig. 1(e)], in accordance with
the anomalous behavior of the density [Fig. 1(b)]. It is worth
noting that here every component density has a dip (see
Table I) and the inertial mass of type-I FDSs being positive is
a highly nontrivial nonlinear effect. Following conventional
arguments [5] the positive inertial mass explains the stability
of MDWs against transverse snake perturbations in two
dimensions [18].

The physical mass is defined as M, = MSN, where
SN = [ dx[n(x) — n,). For type-I FDSs, we obtain M}, =
—2h?/(g,¢") < 0. In the presence of an external potential
U, a soliton with negative physical mass experiences an
effective force from the surrounding liquid pointing in the
opposite direction to —VU (similar to buoyant force). For a
scalar gray soliton the inertial and the physical masses are
both negative and it exhibits normal particlelike behavior,
e.g., oscillations in a harmonic potential [2,3]. Whereas a
type-I FDS in a harmonic potential would be expelled,
i.e., moves away from the potential minimum.

The excitation energy of the type-II FDS is

V2h(g,n, — MV? + Q)2
3g,VM

with 96K"/0V? < 0 [Fig. 1(e)]. Expansion of Eq. (12)
leads to 6K"(q,V?) = 6K"(q,0) + MLV2/2 4 o(V?),
where 6K"(g,0) = v2h(g,n, + q)*/*/(3g,/M) and the
inertial mass

6K"(q,V?) =

(12)

1 — _ \ 2Mh(gnnb + Q>3/2
" av2 V=0 9nq

<0. (13)

Consistently, Ml - —M! — —co as ¢ — 0. The physical
mass My = —2#*/(g,/") < 0. Thus, the inertial and
physical mass of the type-II FDS is similar to those of
ordinary gray or dark solitons. Excitation energies of type-I
and type-1I FDSs coincide smoothly at the maximum speed
[Fig. 1(e)], making transitions between the two types of
FDSs possible under certain circumstances.

Oscillations between type-I and type-I FDSs.—As
discussed earlier the FDS does not vanish as V — cppg,
so a natural question is what will happen if it is further
accelerated? Let us consider a hard-wall trapped quasi-1D
spin-1 BEC subjected to a linear potential whose gradient is
along the positive x axis. A V = 0 type-I FDS is initially
placed near the left end of the system, and the later dynamic

x/én

x/é‘n

VZ‘ / CFDS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t/to

FIG. 2. Oscillations of a FDS in a hard-wall trapped spin-1 BEC
with a superimposed linear potential [41]. The system size is
200¢,, gs/ g9, = —1/2 and § = q/(-2g,7,) = 0.3. Here 71, is the
average density, t, = h/g,n, and &, = h/\/Mg,n, is the density
healing length. Upper and middle panels show spin and density
dynamics of a FDS, respectively. The transverse magnetization is
always zero at the core (see also Fig. S3 [32]) and the topological
characteristic, i.e., the sign change of F, is kept. Bottom panel
shows the velocity of the FDS as a function of time, obtained by
taking the derivative of its position with respect to time. The slope
refers to the acceleration of the FDS and indicates the sign of the
inertial mass (positive: blue; negative: red). The transition between
type-I and type-II FDSs occurs when the slope changes sign at the
maximum speed. Here cppg is the local speed limit for the
(background) density at the position where dV,/dr changes sign.

shows, surprisingly, a periodic motion. The FDS acceler-
ates until it reaches the maximum speed (the local value of
crps [40]) at which point it smoothly transforms into a
type-11 FDS. Because of the sign change of the inertial mass
(or more generally d5K'/0V? > 0 — 05K /0V? < 0), it
starts to accelerate in the opposite direction. After reaching
the turning point, the FDS starts to move to the left. It
converts back to the type-I FDS and experiences positive
acceleration again when gaining the maximum speed. Later
it returns to the initial configuration. Note that during the
motion there is no sign change of the physical mass.
Numerical simulations show that this process continues
without decay (see Fig. 2 and a movie in the Supplemental
Material [32]).

During the motion the total number density profile of
the soliton has only minor changes with respect to the
local background density (see Fig. 2, and Fig. S3 [32]).
However, internal oscillations (driven by the gradient of the
external potential) between m = £1 and m = 0 spin states
near the core take place though the internal currents J. ¢
(Fig. 3, and Fig. S4 [32]), inducing transitions between
type-I and type-II FDSs. Accounting for the varying density
and the potential energy, we map the FDS energy 6K
extracted from the simulation to its corresponding values
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FIG. 3. Internal oscillations between m = 41 and m = 0 spin
states and the excitation energy for one complete cycle of the motion
described in Fig. 2. The black arrows specify the evolution direction.
(al)—(b5) show component densities of the initial state (type-I1 FDS
with zero velocity) [blue], at the maximum velocity [black], at the
turning point (type-Il FDS with zero velocity) [red], at the negative
maximum speed [black], and of the final state (returning the initial
state) [blue], respectively. (c) shows analytical predictions (solid
lines) for n;, = 7;, vs numerical results (markers) for the mapped
uniform system with the same density (see main text). Number
labels indicate the stages corresponding to those showing in the
upper panels. Note that the total energy [43] is conserved.

for a uniform system [32], and find that it oscillates
between lower branch (type-I) and higher branch (type-II)
[Fig. 3(c)], as predicted [42].

It should be emphasized that away from the exact solvable
parameter region (g, = —g,/2, 0 < g < —2g,n,;,) the char-
acteristic features of the oscillating dynamics hold in general
(Fig. S5 [32]). Such an oscillation is a nonlinear phenome-
non and is a result of a combination of internal spin currents
induced by spin-dependent interactions, the external poten-
tial and two types of solitons being smoothly connected at
the maximum speed. It occurs in a system without built-in
periodicity and is distinct from the celebrated phenomenon
of Bloch oscillations where the key ingredient is the presence
of a band structure.

Conclusion.—We discover a propagating magnetic kink
corresponding to a topological soliton with negative physi-
cal mass and positive inertial mass in the easy-plane phase
of a ferromagnetic spin-1 BEC. It can convert to its higher
energy counterpart with negative physical and inertial mass
at a novel maximum speed that can be greater than the
group velocities of elementary excitations which normally
set the speed limits. The transition between the two types
induces oscillations in a linear potential [44]. Our findings
could be relevant to out-of-equilibrium quench dynamics in
1D ferromagnetic superfluids [46,47]. Investigations of
ferrodark solitons are also within the scope of current
spin-1 BEC experiments [48-52].
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