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We show that the orbital angular momentum (OAM) of a light field can be thermalized in a nonlinear
cylindrical multimode optical waveguide. We find that upon thermal equilibrium, the maximization of the
optical entropy leads to a generalized Rayleigh-Jeans distribution that governs the power modal
occupancies with respect to the discrete OAM charge numbers. This distribution is characterized by a
temperature that is by nature different from that associated with the longitudinal electromagnetic
momentum flow of the optical field. Counterintuitively and in contrast to previous results, we demonstrate
that even under positive temperatures, the ground state of the fiber is not always the most populated in terms
of power. Instead, because of OAM, the thermalization processes may favor higher-order modes. A new
equation of state is derived along with an extended Euler equation resulting from the extensivity of the
entropy itself. By monitoring the nonlinear interaction between two multimode optical wave fronts with
opposite spins, we show that the exchange of angular momentum is dictated by the difference in OAM
temperatures, in full accord with the second law of thermodynamics. The theoretical analysis presented
here is corroborated by numerical simulations that take into account the complex nonlinear dynamics of
hundreds of modes. Our results may pave the way toward high-power optical sources with controllable
orbital angular momenta, and at a more fundamental level, they may open up opportunities in drawing
parallels with other complex multimode nonlinear systems like rotating atomic clouds.
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Angular momentum plays a pivotal role in physics. In
settings with a continuous rotational symmetry, Noether’s
theorem [1,2] dictates that this quantity is conserved, an
aspect that governs both the macroscopic and microscopic
behaviors of a multitude of physical systems. These could
range from the dynamics of spiral galaxies [3], pulsars [4],
and neutron stars to the intriguing properties of quantum
vortices in superfluids [5] and rotating atomic clouds [6–8].
The fact that the electromagnetic field carries spin and/or
orbital angular momentum (OAM) was recognized early on
with the advent of Maxwell’s electrodynamics [9,10]. Yet,
it is only recently that the angular momentum of light was
recognized as a new degree of freedom through which a
wealth of opportunities could open up within the discipline
of optics and photonics [11–14]. In this respect, the orbital
angular momentum of light has been systematically used in
manipulating and guiding atoms [15], in optical vortex
soliton interactions [16,17], in microscopies [18], optical
ablation [19], quantum entanglement [20–22], astronomy
[23–26], and high-speed communication systems [27,28],
to mention a few. Similar ideas have lately permeated the
area of statistical optics as well as the new emerging field
of optical metasurfaces where new methodologies have

been developed to generate and detect OAM light states
[29–33].
On the other hand, the way angular momentum appears

in statistical mechanics is more subtle. As indicated by
Jaynes [34] and Callen [35], if the OAM L⃗ is a constant of
the motion, it can then assume the role of an extensive
variable in addition to that of the energy. As such, it must be
paired with an intensive quantity or a generalized force
that acts as a “temperature” in the canonical distribution
function. Under these conditions, one should expect that
the entropy of the system must also be extensive with
respect to the OAM, thus satisfying a key postulate of
thermodynamics. Interestingly, OAM thermalization
effects have been considered in the past in connection
with rotating atomic gases [6–8] when studied in the
canonical ensemble. In such rotating canonical settings,
a modified energy landscape can be introduced [36] by
means of which the rotational speedΩ can be interpreted as
the conjugate temperature corresponding to the OAM. As
we will see, the situation in nonlinear optical environments
is different. While there are similarities with the case of
rotating bosonic gases, in optics, the notion of relying on
an underlying rotational speed Ω is absent. At a more
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fundamental level, what sets these two physical systems
apart is the fact that a nonlinear multimode photonic system
behaves as a microcanonical ensemble after reaching
thermal equilibrium in isolation.
In this Letter, we show for the first time, that the OAM of

a light beam propagating in a nonlinear cylindrical wave-
guide structure can be irreversibly thermalized in a manner
that directly depends on the discrete OAM number of a
particular mode. Even more importantly, upon attaining
thermal equilibrium, the OAM is now governed by its own
optical temperature TL—a temperature that is the thermo-
dynamic conjugate of the OAM in this microcanonical
optical system (Fig. 1). In this respect, a generalized
Rayleigh-Jeans distribution can be derived, that even under
positive temperature (TU) conditions, does not always favor
the ground state. New equations of state are obtained that
relate the extensive variables with their corresponding
generalized forces. Finally, based on entropic principles,
we show that the OAM temperature TL is a true thermo-
dynamic quantity in the sense that it dictates the OAM
exchange between two optical beams of opposite spin
when traversing a nonlinear medium. The predicted theo-
retical results are in excellent agreement with numerical
simulations.
To this end, let us consider a weakly guiding, nonlinear

cylindrical waveguide having a normalized refractive index
distribution VðrÞ, where r represents the cylindrical radial
coordinate. In Kerr nonlinear media, the optical field
uðx; y; zÞ evolution along the z direction is governed by
the normalized nonlinear Schrödinger equation:

i
∂u
∂z þ

�∂2u
∂x2 þ

∂2u
∂y2

�
þ Vðx; yÞuþ juj2u ¼ 0: ð1Þ

In this system, the field orbital angular momentum is given
by L⃗ ¼ ∬∞

−∞r⃗ × p⃗dxdy, where p⃗¼ ði=2Þðu∇⊥u�−u�∇⊥uÞ
is the transverse momentum density, and ∇⊥ ¼ x̂ð∂=∂xÞ þ
ŷð∂=∂yÞ. Given that L⃗kẑ, from this point on, L will be
treated as a scalar quantity. The conservation laws C

associated with Eq. (1) are known to satisfy fC;Hgu;π ¼∬∞
−∞½ðδC=δuÞðδH=δπÞ−ðδH=δuÞðδC=δπÞ�dxdy¼0, where
H ¼ −iðuxπx þ uyπyÞ þ iVuπ þ 1

2
u2π2 is the system’s

Hamiltonian density, π ¼ iu� is the canonical field
momentum, f·g denotes a Poisson bracket, and δ represent
functional derivatives. In addition to the total power P ¼
∬∞
−∞juj2dxdy that remains constant throughout propaga-
tion, one can show that in a fully cylindrical structure
[Vðx; yÞ ¼ VðrÞ], the field orbital angular momentum L is
also an invariant in this nonlinear system (see Supplemental
Material [37]).
In general, an optical field propagating in the afore-

mentioned cylindrical waveguide (supporting M modes)
can be represented as a superposition of its under-
lying bound states ψnðr;ϕ; zÞ ¼ RnðrÞeiεnzeilnϕ, i.e.,
u ¼ P

M
n¼1 cnψn. Here, εn stands for the propagation

constant or eigenvalue of the eigenmode ψn, ln ∈
f0;�1;�2;…g denotes its discrete OAM charge, RnðrÞ
is the radial part of the eigenfunction, while the complex
number cnðzÞ describes the power occupancy (jcnj2) of this
state during propagation. In this representation, the power
and OAM invariants can be written as P ¼ P

M
n¼1 jcnj2 and

L ¼ P
M
n¼1 lnjcnj2 [37]. On the other hand, the Hamiltonian

constant of the motion H ¼ ∬∞
−∞Hdxdy involves both a

linear (−U) and a nonlinear component (HNL), that is,
H ¼ −U þHNL. Given that the system is operating in the
weakly nonlinear regime, one finds that the Hamiltonian is
dominated by its linear contribution, and as a result the
quantity U ¼ −

P
M
n¼1 εnjcnj2 now assumes the role of

the third invariant [38–42]. Interestingly, this “internal
optical energy” U is associated with the Minkowski
longitudinal electromagnetic momentum flowing in this
guiding arrangement [43].
The existence of these three invariants ðP; U; LÞ in this

weakly nonlinear heavily multimode optical fiber now
allows one to deploy principles from statistical mechanics.
What facilitates this approach is the absence of required
conservation laws (M − 3), an aspect that leads to chaotic
or wave turbulent behavior [38,44] in the evolution of the
modal occupancies jcnðzÞj2 and therefore allows the system
to ergodically explore its phase space. In other words, all
possible microstates ðc1;…; cMÞ that lie on the manifolds
of constant angular momentum (L), power (P), and energy
(U) are accessed with equal probability because of non-
linearity. To derive the state functions that relate the
thermodynamically extensive variables ðP; U; L;MÞ to
the entropy S, we adopt a grand canonical description in
a phase space constructed by Jn ≡ jcnj2 ðn ¼ 1; 2;…;MÞ
[45]. In this grand canonical frame, the local state of
the system is described by a normalized probability density
distribution ρðJ1;…; JMÞ where

R∞
0 ρðJ1;…; JMÞ×Q

M
n¼1 dJn ¼ 1. Once the system attains thermal equilib-

rium, the average values of P, L, and U serve as the
invariants of this grand canonical system. In turn, the

FIG. 1. The OAM of light propagating in a multimode
cylindrical structure can be thermalized because of nonlinearity
in a way that favors either positive or negative OAM numbers.
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probability density ρ can be used to construct the Gibbs
entropy

S ¼ −
Z

∞

0

ρðJ1;…; JMÞ ln ρðJ1;…; JMÞ
YM
n¼1

dJn; ð2Þ

which can be maximized by means of Lagrange
multipliers, i.e.,

ρðJ1;…; JMÞ ¼
eαPðJ1;…;JMÞþβUðJ1;…;JMÞþγLðJ1;…;JMÞ

Z
; ð3Þ

where α, β, and γ represent constants associated with the
three invariants. In this case, the generalized grand partition
function is given by [37]

Z ¼
Z

∞

0

eα
P

M
n¼1

Jn−β
P

M
n¼1

εnJnþγ
P

M
n¼1

lnJn
YM
n¼1

dJn ð4aÞ

¼
YM
n¼1

1

−αþ βεn − γln
: ð4bÞ

At equilibrium, the mean value hJmi ¼ hjcmj2i ¼R
∞
0 ρðJ1;…; JMÞJm

Q
M
n¼1 dJn can be directly obtained from

the generalized partition function Z through the relations
hJmi¼ð1=βÞð∂ lnZ=∂εmÞ¼−ð1=γÞð∂ lnZ=∂lmÞ [37]. From
here, one can find that hJmi ¼ ½ð−1Þ=ðα − βεm þ γlmÞ�. We
then introduce two intensive quantities by defining β≡
−1=TU and γ ≡ −1=TL, i.e., an energy temperature TU and
an OAM temperature TL that are conjugate to the extensive
variables U and L, respectively. Here, α is another intensive
quantity that is conjugate toP, which serves as the chemical
potential of the system. As a result, upon thermalization, the
average power occupancy of each mode is found to obey a
generalized Rayleigh-Jeans distribution

hjcnj2i ¼
−1

αþ εn
TU

− ln
TL

: ð5Þ

The generalized Rayleigh-Jeans distribution in Eq. (5)
resulting from a generalized Gibbs ensemble [46,47] is
central in this work. It implies that not only the internal
energy U can be thermalized (via eigenvalue εn), but also
the OAM since it explicitly involves the topological charge
of the mode ln—an aspect that has a profound effect on the
modal power distributions (Fig. 1). Because of OAM, the
possibility exists that the ground state (the lowest-order
mode) is no longer the most populated in terms of power.
Even more importantly, TL is a true thermodynamic
quantity that governs the flow of OAM between two
optical beams. Note that, in our formalism, the “hot”
and “cold” relative temperature axes are assigned with
respect to the angular momenta, which in our designation is
positive for right-handed OAM or negative for left-handed

OAM. This consistently ensures that angular momentum
always flows from a hot subsystem to a cold subsystem in
full agreement with the second law of thermodynamics.
From this generalized distribution, the following global
equation of state can be derived [37]:

−αP þ U
TU

þ L
TL

¼ M; ð6Þ

which relates the three intensive variables α, TU, and TL to
the four extensive quantities P, U, L, and M. We note that
the inclusion of the number of modes M in the equation of
state (6) is of paramount importance since it not only
removes the “ultraviolet” divergence (for a finite number of
modes) but also guarantees the very extensivity of our
thermodynamic formalism.
Based on these premises, one can formally show that

the entropy S of this optical multimode system can be
directly expressed in terms of the modal occupancies
via S ¼ P

M
n¼1 lnðhjcnj2iÞ [37,38,43,45,48]. In addition,

the fundamental equation of thermodynamics demands
that S ¼ SðP; U; L;MÞ. Hence, two temperatures can be
entropically defined through T−1

U ≡ ∂S=∂U and
T−1
L ≡ ∂S=∂L. Similarly, a generalized chemical potential

α and an optical thermodynamic pressure p̃ can also be
introduced using α≡ −∂S=∂P and p̃≡ ∂S=∂M [37].
From here, a corresponding Euler equation can be obtained,
which is a direct manifestation of the extensivity of the
entropy itself with respect to ðP; U; L;MÞ,

S ¼ −αP þ U
TU

þ L
TL

þ p̃M: ð7Þ

In what follows, we corroborate our theoretical formal-
ism by performing a series of numerical simulations in
nonlinear parabolic and step-index optical fibers. In this
respect, the results presented in Eqs. (5) and (6) will be
employed to predict the OAM thermalization once equi-
librium conditions are attained. As a first example, let us
consider a parabolic silica fiber having M ¼ 120 modes,
conveying in total 100 kW of power at a wavelength of
1064 nm [37]. For this case, 62modes of this fiber are evenly
excited [Fig. 2(a)]. In normalized units, these launching
conditions correspond to P ¼ 100, U ¼ −1468, and
L ¼ −140. For this scenario, our theory predicts that at
thermal equilibrium, the propagating optical wave front is
expected to settle into an OAM temperature TL ¼ 14.5, an
energy temperature TU ¼ 15.2, and a generalized chemical
potential α ¼ −2.26. To verify these predictions, we numeri-
cally solved Eq. (1) under the same initial conditions. For
each run,we allowed the phases of the input cn coefficients to
statistically vary in order to construct the statistical ensem-
bles. Figures 2(b) and 2(c) show that an excellent agreement
exists between the theoretically anticipated results and the
numerical computations after OAM thermal equilibrium is
reached at ∼1 m of propagation. In this case, the modal
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occupancies hjcnj2i are displayed on a two-dimensional
triangular map that is specified by the accessible normalized
propagation constants εn and OAM numbers ln associated
with the optical modes. For these initial conditions, the
energy temperature TU is positive, and therefore, the
fundamental mode (LP01) is the one mostly populated.
Meanwhile, the OAM temperature TL so happens to be
positive, in which case, the optical power resides mostly in
the left-handed rotatingmodes with negativeOAMcharges
(ln < 0). It is important to note that, in all cases, the initial
conditions uniquely determine the equilibrium intensive
variables ðTL; TU; αÞ of this system. As Fig. 2(d) shows,
both positive and negative TL temperatures are possible,
favoring left-handed and right-handed OAM groups of
modes, respectively. Given that the OAM numbers in a
cylindrical structure always come in pairs (�l), if the input
OAM is zero, the system will relax into an infinite TL
temperature [Fig. 2(d)], which leads to OAM equipartition,
and hence, the Rayleigh-Jeans distribution of Eq. (5)
assumes a standard form [44].

Our theory is universal in the sense that it can be
deployed to predict OAM thermalization in any cylindrical
multimode nonlinear structure. Figure 3(a) shows the
results of OAM thermalization in a step-index fiber having
M ¼ 234 modes. For the step-index case, the ε − l map
now assumes a paraboliclike shape. For the excitation con-
ditions used in this simulation, P ¼ 3200, U ¼ −75420,
and L ¼ 8776, for which values our theory predicts
TU ¼ 104, TL ¼ −204, and α ¼ −0.04. As Figs. 3(a)
and 3(b) show, there is excellent agreement between the
numerical simulations and the theoretically anticipated
results. Counterintuitively, in this case, while the energy
temperature TU is positive, the fundamental mode (LP01) is
no longer the most populated. Instead, the eighth mode
LPþ3;1 (l ¼ þ3) carries most of the power. This anomaly in
the distribution results from the interplay between the more
convolved ε − l map that corresponds to a step-index fiber
and the nonseparability of U and L in the generalized
Rayleigh-Jeans distribution. To intuitively understand this
behavior, one can assign effective eigenenergies in this
map according to εn;eff ¼ εn − lnTU=TL that angularly
[θ ¼ arctanðTU=TLÞ] project these data into a standard
Rayleigh-Jeans curve. This is illustrated in Fig. 3(b) where
the eighth mode is the first in line to assume the role of an
“effective ground state.” In this respect, the ratio of the two
temperatures TU=TL can be used to select the highest
populated mode in this system [49,50].
Next, we show that the OAM temperature TL is an actual

thermodynamic force that governs the direction of OAM
exchange between two subsystems, just like its energy
counterpart. Figure 4(a) illustrates a scenario where
two circularly polarized beams are launched in the same
nonlinear parabolic silica fiber. In this case, the total electric
field with components jRi and jLi can be written in terms

(a) (b)

(c) (d)

FIG. 2. Thermalization dynamics of the OAM associated with
an optical beam propagating in a nonlinear parabolic graded-
index fiber. (a) Initially, equally excited modes (blue dots) are
plotted on the ε − l triangular eigenvalue grid of a parabolic fiber.
(b) The theoretically predicted modal occupancies hjcnj2i (yellow
surface) are in excellent agreement with those obtained from
numerical simulations (blue dots). The fluctuations associated
with the modal occupancies are described in Ref. [37]. (c) During
propagation, the optical entropy monotonically increases (blue
curve) until it reaches its maximum value predicted from Eq. (5).
(d) Depending on initial conditions ðU;LÞ, the system can settle
into four different temperature regimes which are separated by the
infinite temperature curves of energy (red) and OAM (purple).
The red star denotes the initial ðU;LÞ quantities that lead to
(b) with TU > 0, TL > 0.

(a) (b)

FIG. 3. Thermalization OAM dynamics associated with an
optical beam propagating in a nonlinear step-index optical fiber.
(a) The theoretically predicted modal occupancies hjcnj2i lying
on the yellow surface are in good agreement with those obtained
from numerical simulations (blue dots). For this example, the
OAM temperature is negative, while the energy temperature is
positive. Note that the ε − l diagram (orange area) of a step-index
fiber has now a paraboliclike shape. (b) Modal occupancies
as a function of ðε − lTU=TLÞ. For this particular example,
TU=TL ¼ −0.5, and as a result, instead of the ground state,
the higher-order LPþ3;1 mode now conveys most of the power.
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of slowly varying envelopes ðu; vÞ as E⃗ ¼ ujRi þ vjLi,
whose evolution equations can be found in Ref. [37]. In
this arrangement, one can formally identify the following
conservation laws [37]: Pu ¼ const, Pv ¼ const, Ltotal ¼
Lu þ Lv ¼ const, and Utotal ¼ Uu þUv ¼ const. In the
example that follows, the right-hand circularly (RHC)
polarized light (red) is hotter in energy temperature TU,
while the left-handed circularly (LHC, blue) polarized light
is hotter in terms of its OAM. Moreover, at the input
Luð0Þ ¼ −74, Lvð0Þ ¼ 4ðLtotal ¼−70Þ, Pu ¼ 50, Pv ¼ 40,
Uuð0Þ ¼ −800, and Uvð0Þ ¼ −774ðUtotal ¼ −1574Þ.
While the two circular polarizations do not exchange
power P, they can exchange energy U and OAM L
according to the second law of thermodynamics

dST ¼
�

1

TU;u
−

1

TU;v

�
dUu þ

�
1

TL;u
−

1

TL;v

�
dLu ≥ 0; ð8Þ

given that dUu ¼ −dUv and dLu ¼ −dLv. As a result,
during copropagation, both energy and OAM are
exchanged until the two polarizations settle into the same
temperatures ðTU;u ¼ TU;v; TL;u ¼ TL;vÞ, as expected
from actual thermodynamic forces. Figures 4(b) and 4(c)
demonstrate this behavior. Note that the equilibrium
temperatures and chemical potentials can be directly
predicted from the theoretical formalism [37].

In conclusion, we have shown that the OAM of a light
beam propagating in a nonlinear cylindrical waveguide
structure can be thermalized. A generalized Rayleigh-
Jeans distribution has been derived that explicitly depends
on the OAM charge. The interplay between energy and
OAM can lead to an anomaly in the power distributions
among modes, thus allowing higher-order modes to be
favored. The exchange of OAM between two subsystems
formally indicates that the OAM temperature acts like a
true thermodynamic force. Before closing, we note that
of interest would be to investigate whether some of the
ideas presented above can be pursued in rotating atomic
clouds where, for example, a two-component atomic gas
(with each component having an opposite OAM) can be
thermalized in a cylindrically symmetric trap. In addition,
can anomalies in thermalization be observed in steplike
anharmonic traps? The prospect of using similar notions
in other fields of physics could be another interesting
direction. It recently came to our attention that OAM
thermalization has been experimentally observed
in Ref. [51].
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