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We present a closed formula for all Bern-Carrasco-Johansson (BCJ) numerators describing
D-dimensional tree-level scattering amplitudes in a heavy-mass effective field theory with two massive
particles and an arbitrary number of gluons. The corresponding gravitational amplitudes obtained via the
double copy directly enter the computation of black-hole scattering and gravitational-wave emission. Our
construction is based on finding a kinematic algebra for the numerators, which we relate to a quasishuffle
Hopf algebra. The BCJ numerators thus obtained have a compact form and intriguing features: gauge
invariance is manifest, locality is respected for massless exchange, and they contain poles corresponding to
massive exchange. Counting the number of terms in a BCJ numerator for n — 2 gluons gives the Fubini
numbers F,_s, reflecting the underlying quasishuffle Hopf algebra structure. Finally, by considering an
appropriate factorization limit, the massive particles decouple, and we thus obtain a kinematic algebra and
all tree-level BCJ numerators for D-dimensional pure Yang-Mills theory.
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Introduction.—Quantum field theory holds many sur-
prising discoveries, one of which is the Bern-Carrasco-
Johansson (BCJ) duality between color and kinematics
[1,2]. In addition to providing a field-theory underpinning
of the Kawai-Lewellen-Tye (KLT) open-closed string
relations [3], the duality hints at a hidden algebraic
structure in a variety of gauge theories. Scattering ampli-
tudes in these theories can be written as a sum of cubic
diagrams, each one expressed as the product of a color and
a kinematic factor. The color factors satisfy Jacobi relations
inherited from the gauge-group Lie algebra, and the
kinematic numerators satisfy corresponding kinematic
Jacobi relations [1]. Through the double-copy construction,
gravitational amplitudes can be obtained from the kin-
ematic numerators.

A central question is to identify the hidden algebra
behind the kinematic relations. In this Letter we provide an
explicit construction, in two related contexts. First we will
study the amplitudes in an effective theory of heavy
particles coupled to gluons, or gravitons [4-8]. These
theories, which we will refer to as HEFT (heavy-mass
effective field theory), [9] are obtained from a Yang-Mills
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(YM) theory, or general relativity, by restricting to the
leading-order term in an inverse mass expansion. This is an
appropriate approximation for the dynamics of particles
with momentum exchange much smaller than their masses.
Astrophysical black-hole scattering in general relativity
satisfies this, and the relevant gravitational amplitudes were
recently studied through a gauge-invariant double copy
[10]. The underlying gauge-theory factors are the central
objects, and we will here unravel their algebraic structure,
including that of pure YM theory after factorizing out the
heavy particles.

The understanding of the kinematic algebra has so far
only progressed in small steps. The first successful con-
struction of the algebra was limited to the self-dual sector of
YM theory [11]. In that case the algebra corresponds to
area-preserving diffeomorphisms, and explicit representa-
tions of the generators were found. Self-dual YM is far
from a complete theory, having vanishing tree amplitudes
(apart from a single three-point amplitude for complex
momenta) and a non-CPT invariant spectrum, yet it is the
first confirmation of BCJ duality with explicit generators
and cubic Feynman rules. Another example of the duality
was found in the nonlinear sigma model [12], as realized in
Ref. [13] using a cubic Lagrangian. The corresponding
kinematic algebra was later [14] tied to that of higher-
dimensional Poincaré symmetry [15].

Efforts to identify the kinematic algebra have recently
been renewed for YM theory [16,17], and for HEFT [10].
The common idea is to realize the algebra with abstract
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vector and tensor currents, multiplied through a fusion
product. A consistent fusion product was worked out for
the maximally helicity-violating (MHV) and next-to-MHV
sectors of YM theory [16,17] [18] The approach was then
applied to HEFT in Ref. [10], giving explicit expressions
for two heavy particles coupled to gluons or gravitons, and
the fusion products were presented up to six particles. This
approach is well adapted for gravitational physics, and was
used to compute the black hole scattering angle in a post-
Minkowskian (PM) expansion at 3PM order [19] (see also
Refs. [20-26]).

In this Letter we construct a kinematic algebra for HEFT,
and by factorization, infer that the same algebra also works
for pure YM theory. In particular, we give a representation
of all the generators, and all fusion products needed for
computing tree-level HEFT amplitudes with two heavy
particles and an arbitrary number of gluons or gravitons.
Interestingly, the obtained fusion product has the same
structure as the quasishuffle product, known from the
mathematical literature, specifically in the context of
combinatorial Hopf algebras of shuffles and quasishuffles
[27-29]. The quasishuffle Hopf algebra generates all
ordered partitions for a given set [27] (often called
SC—the linear species of set compositions, or ordered
partitions). Mapping the generators to gauge-invariant
expressions, we obtain a closed formula for all tree-level
BCJ numerators relevant to the HEFT. The numerators are
gauge invariant, manifestly crossing symmetric and fac-
torize into lower-point numerators on the massive poles.
The underlying quasishuffle Hopf algebra implies that the
counting of the number of terms in a numerator with n — 2
gluons gives the Fubini number F,_;, which counts the
number of ordered partitions of n — 3 elements.

Finally, all the considerations in HEFT directly translate
to pure YM theory. The pure-gluon BCJ numerators, and
the corresponding expressions for the generators, are
obtained from the natural on-shell factorization limit
[10], which removes the two heavy particles and replaces
them with an additional gluon (with label n — 1). This is
straightforward: replace the heavy-particle velocity v with
the last polarization vector, v — ¢,_;, and impose the last
on-shell condition p?  , — 0. This operation does not
modify the generator fusion rules, and hence YM theory
admits the same kinematic algebra. The heavy-mass poles
become spurious in this limit, and cancel out once the
amplitude is assembled.

The HEFT kinematic algebra.—A novel color-kinematic
duality and double copy for HEFT was obtained in
Ref. [10], by four of us. Ignoring couplings, the YM
and gravity tree amplitudes with two heavy particles and
n — 2 gluons or gravitons are

A(12..n=2,v) = Zm,

I'ep dr
M(12...n-2,v):ZW(dF—;”)], (1)

where p (p) denotes all (un)ordered nested commutators of
the particle labels {1, ..., n — 2}, where the leftmost label is
fixed to 1. The ordering is important since here we work
with color-ordered YM amplitudes. Considering the
set {1,2,3}, we have p={][l1,2],3],[1,[2,3]]} and
p={[1,2],3],[[1,3].2],[1,[2,3]]}. In general, labels
1,...,n—2 are reserved for the gluons or gravitons and
the heavy particles are assigned n — 1 and n, and v is the
velocity that characterizes the heavy particles.

The nested commutators are in one-to-one correspon-
dence with cubic graphs (and hence BCJ numerators), and
the corresponding massless scalarlike propagator denom-
inators are denoted as dr. For instance, the nested com-
mutator [[1, 2], 3] corresponds to the following cubic graph,
associated BCJ numerator, and propagator denominator:

1 2 3
\(/ A N(H172]73]3U)a d[[172]73]:pf2pf23, (2)
[ |

where p; ;= p; +---+ p; and the red square denotes
the heavy-particle source.

The BCJ numerator N (I, v) is a function of a nested set
of labels I', and it has an expansion which parallels that of
the commutator, e.g.,

N([1,[2,3]],v) = N(123,v) = N (132, v)
- N(231,v) + N(321,v), (3)

and we refer to the object N'(1...n — 2, v) as the prenum-
erator. In analogy with a Lie algebra, this quantity should
be obtained by multiplying generators through an associa-
tive fusion product. Thanks to the nested commutator
structure, the BCJ numerators will automatically satisfy
kinematic Jacobi identities.

Explicit prenumerators can be obtained from the con-
straint imposed by requiring that they lead to correct
amplitudes, and in Ref. [10] this was done up to six points.
In the following, it will be crucial to find representations of
the prenumerators where any nonlocality will correspond to
a massive physical pole ~1/(v - P), where P is a sum of
gluon momenta [30]. This linearized propagator arises
because of the large-mass expansion. Our results will be
an improvement compared to Ref. [10], since in that work
additional spurious poles were present in the prenumer-
ators. We find the following explicit new results up to five
points:

N(,v)=v-¢,
v-F-Fy-v
N(12,p)=——T1 "2 —
(12.v) 0
N(123,1)):U | fp b3 VLl Vp 3
3v-py 3v-piv-pi

’l)'Fl‘F3‘V1‘F2"U

4
3v-piv-pi3 ()
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where FI* i= plef — épt, and VI = 01 Y, pt = o0 pt.
Note that gauge invariance is manifest except in the case of
N (1, v), where it follows from three-point kinematics.

Following Refs. [10,16,17], the prenumerators are pre-
sumed to be constructible in an algebraic fashion, by
multiplying abstract generators of the kinematic algebra
via a fusion product,

N(lzn -2, 1)) = <T(1)*T<2)* cen *T(n_2>>, (5)

where the T ;) s are generators carrying the gluon label i,
and * denotes the bilinear and associative fusion product.
The angle bracket represents a linear map from the abstract
generators to gauge- and Lorentz-invariant functions. It
preserves the multilinearity with respect to the polarization
vectors and the linear scaling in the velocity v of the heavy
particles.

The starting point of the construction is (T;)) = v - &,
which is the unique choice that respects all the properties
listed above, and furthermore generates the correct three-
point amplitude. We can then combine two generators to
obtain

N(12,0) =(T1)xT2)) = =(T(12)). (6)

where we choose (T(j5)) = (v-Fy-F,-v)/(2v-p,) to
reproduce Eq. (4) [31]. Similarly, at five points one finds

Tao*T) = =Taos) + Tz + Tazey - (7)

with
U'Fl‘Fz'F3'U
T - )
( (123)> 30 py
’[)'Fl‘Fz'Vlz'F3‘U
T - 5
< (12>'(3)> 3v-pv-pp
U'FI‘F3'V| 'F2'1)
(Taz)e) = 3 : (8)
UV-P1V - P13

The particular index assignments in the obtained generators
are consistent with a general formula, which we find to
work to any number of points,

1 T1 T2 Tr
(Tam),(r2)senns(re)) 1= \ : '{ : /
9)

0 Fir, V() Fry - Vo) Fr, v

~ (n=2)vp1opir, VU PLr e s

The 7,’s are ordered nonempty sets such that 7; Uz, U
~-U7,=1{2,3,...,n=2} and 7;,N7; =@, ie, they
constitute a partition. The set ©(z;) consists of all indices
to the left of 7; and smaller than the first index in z;; that is
G)(Ti) = ({1} urt,U---u Ti—l) N {1, ...,Ti[l]}. Note that

the denominators in Eq. (9) are the advertised massive
propagators. For convenience, we also define F as the
ordered contraction of several linearized field strengths F";*
with indices in 7;, e.g., Fs = F|“F},.

To clarify the formula, consider a nontrivial example,
T (1458),(26),(37)» that is mapped to

<T1458 " 37>:”'F1458'V1'F26'V12'F37'U
(1458).(26).37) 8V P1V " PlassV - Pioases

(10)

We may further clarify the ©(z;)s by drawing a “musical
diagram,” where the gluon labels (notes) are filled in
progressively from left to right and each horizontal line
indicates which set in the partition they belong to:

N —e2 92—
(in) -6 06 O-

A given O(r;) is associated with the first gluon on the
horizontal line 7;, and the set includes all labels “south-
west” of this gluon. Specifically, in this example, the
relevant sets used in Eq. (10) are ©(26) = {1}, and
©(37) = {1,2}. Furthermore, the contraction of field
strengths can be read out by following each horizontal z;
line in this musical diagram. A horizontal line can be
thought of as the fundamental representation of the Lorentz
group, and the linearized field strengths as Lorentz gen-
erators acting in this space.

Let us return to the algebra of the abstract generators.
The prenumerators can be recursively constructed from
only knowing the following fusion product:

T(12))(52).e(e) ¥ T () (12)

We assume that the possible outcome of this fusion product
maintains the relative order of the labels in the left and right
generator. Then by assuming we have a complete set of
generators, we can only produce the terms

where i € {1,...,r}. (13)

By writing up a general ansatz, and fixing the free
coefficients by comparing to the correct amplitudes via
the map in Eq. (9), we find a simple all-multiplicity
solution. The fusion product is captured by the general
formula

i=1
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where w denotes the shuffle product between two sets, e.g.,
{A,B}w{C} = {ABC,ACB, CAB}. A proof for Eq. (14)
will be given in the next section; here we will study
examples. For n = 4, 5, Egs. (6) and (7) are recovered, and
at six points, the fusion products are

T23y*Ty = =T 1234) + T(123),4) T T(14),(23)
T2).3)*T@ = ~Ta2).64) ~ T24.03)
T Ta2.60.4 T Ta2.4.0 + Ta.02.0)
T3).@*T@ = ~Tas).4 ~ T + Tz
T Tas)@.0 + Ta4).6).2)> (15)

leading to the six-point prenumerator

N(1234,v) = (=T(12).3).04) = T12).04.0) = T141..9)
~Tua.0.0 ~Tas@.0 ~Ta.e.0
+ T 123),4) T T(124).3) + T(134),2)
+T2),64) + T13).24) + T1ay.23) — T(1234))-
(16)

As already advertised, the algebra defined by the fusion
product in Eq. (14) is known in the context of combinatorial
Hopf algebras of shuffles and quasishuffles [27-29].
Specifically, our fusion product defines a quasishuffle
Hopf algebra that generates all ordered partitions for a
given set [27]. Indeed, the subscripts of the T”’s are precisely
all possible ordered partitions of {2, 3, ...,n —2}. This is
also interpreted in Ref. [29] as a Hopf monoid in the
category of coalgebra species. These Hopf algebras are
endowed with a product that is commutative and associa-
tive [27,32,33], with a coproduct, counit, and antipode [27]
(see the Supplemental Material [34] for more details).

We have thus found a realization of the kinematic algebra
for HEFT by mapping it to a quasi-shuffle Hopf algebra.
Note that the associativity of the fusion product is a natural
property—for example, we can construct a BCJ numerator
either as ((T(l)*T(z))*T(g))* ce Or - *(T(n—4)*(T(n—3)*
T(4—2))). To complete the story, we must also give the
fusion product for the most general generators. Assuming
the fusion product is associative and preserves the relative
order for the left and right generators, one obtains a unique
result [28],

where 7; and @; do not contain the label 1, as this index is
always fixed to be the leftmost index of any expression, and

thus it is inert to the algebra. The fusion product of two
generators, neither containing label 1, is also given by
Eq. (17) after dropping the 1. We use {7} and {@} to denote
the total set of labels in the z; and w;, respectively. By
ol(;; we mean a restriction to the elements in {7},
e.g., {(235),(4), (67)} 234y = {(23). (4)}.

The number of ordered partitions of {2,3,...,n — 2} are
known as the Fubini numbers [35]

Fn_3=§r!{n_3}, (18)

which therefore also counts the number of terms in the
prenumerator of an n-point HEFT amplitude. Here, {}}
denotes the number of k partitions on n objects (also known
as Stirling partition number of the second kind). The Fubini
numbers also give the Hilbert series of SC [29].

From the kinematic algebra, the closed form of the
prenumerator is directly obtained as

N(l..n=2,v)=

(19)

where (T(i,,) () is defined in Eq. (9) and P({rz) ..... w2}
denotes all the ordered partitions of {2,3,...,n — 2} into r
subsets. This closed-form expression automatically induces
a recursion relation for the prenumerator:

1 7. 7Tr

N(12...n—2,v) = i&n_Q +Z Y

— (1) v-Fla. p—2v
(n—2)v-p1

— Z (—1)"BN(17L,v)

TRC{2,-- ,n—2}

<n727nR)H@7—R TR
(n72)v'p1TL

(20)

where 7; Utp ={2,3,...,n =2}, 7;,7x # @, and we
have defined

H{r,r =P Froov. (21)

Here np denotes the number of indices in 7z. From
Eq. (20), we can see that the number of terms satisfies
the recursion relation

n—4
n—73
F,;= Z( l_ >Fi, (22)
i=0

where F, = 1. This is the well-known recursion relation for
the Fubini numbers [36]. To illustrate the simplicity of the
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prenumerator, we quote the fairly modest number of terms
up to ten points:

n 3 4 5 6 7 8 9 10
F.3 1 1 3 13 75 541 4683 47293

In the next section we present a general proof of our
construction of the BCJ numerators.

Proof of the form of the prenumerator.—Here we
give the proof of the BCJ numerators. Using
N([12...n=2],v) =N (]...[[1,2],3]...,n=2],v), we show
that they give correct amplitudes, as obtained from the
prenumerator in Eq. (19). In addition, we will show that the
following simple relation holds, valid in the HEFT:

N([12..n=2],v) = (n =2)N(12...n=2,v). (23)
The outline of the proof is as follows. Starting from the
factorization properties on massive poles of our HEFT
numerators as derived from the KLT formula [37], we prove
that the quantity (n—2)N(12...n —2,v) has the same
factorization. We will then consider the difference between
(n —2)N(12...n — 2, v) and the BCJ numerator (as derived
from KLT), which is free of poles. Using arguments similar
to those of Refs. [38,39], we will then show that gauge
invariance ensures that this difference vanishes.

The starting point is the factorization on massive poles of
BCJ numerators in HEFT. Using KLT relations, one can
easily show that in the on-shell limit v - p;;, =0

Y LYY

) pe(TR) p"’R[l

Nxrr([Irz], v

NKLT([
JNkrr([Tr],v)
(24)

where 7, U 7g = {2,3,...,n — 2} and 75y denote the first
index in 7. We also called n; (ny) the number of gluons in
71 (7g). The red cross denotes the cut on the physical pole.
The derivation of this formula is given in the Supplemental
Material [34], also making use of the results of
Refs. [40—46].

The next step is to prove that the prenumerator in
Eq. (19) has the same factorization as Eq. (24), which
we will now do inductively. The seed of the induction is the
factorization where the right-hand side of Eq. (24) only
contains one gluon, that is, np = 1, and we focus on the
massive pole 1/(v-py, ). The factorization is then
immediately read off from Eq. (20): only one term in
the second diagram in that equation contributes, with the
residue given by

(n=3)N(liy...ip_3.0)P1sy iy - Pi, N (g2, v). (25)

In the next step, we assume that factorization for np =
Jj — 1 at the massive pole 1/(v - py,, ) has the same form as
Eq. (24), and we then derive that for np = j. According to
Eq. (20), in this channel the residue of (n—2)A\ at the
massive pole is

He)o Helo,).0, (26)

VPV Poi6y0,4

(ng + 1)N(11L,Z})ZR Z

r=1 o’GPiQ

As we show in the Supplemental Material [34], in the limit
v- pi;, — 0, the sum in Eq. (26) becomes precisely a BCJ
numerator,

ng

ZZ

H@(a,) o,

v pﬁl”z Or-1

=Po(1g) Py npN (tg,v).

(27)

This establishes that our proposed formula in Eq. (19) has
the required factorization property of Eq. (24).

Next, we consider the difference

f=m=-2)N(1...n=2,v)=Ngr([l...n=2],v). (28)
As the factorization on the heavy-mass poles is the same,
and both contain only such poles, f must be a polynomial.
An adaptation of the argument of Refs. [38,39] allows us to
show that f = 0. To this end, we note that the velocity v can
appear in two possible ways. First, through the combination
p - v with p being any of the momenta. This multiplies a
polynomial function of dimension n — 4 built from n — 2
gluon momenta and n — 2 polarizations. As is well known,
and pointed out recently in Refs. [38,39], no such gauge-
invariant function exists and hence it must vanish. Second,
v can appear in the combination v - ', which now multi-
plies a function of dimensions n — 4, constructed from
n —2 gluon momenta and n — 3 polarizations. As before,
such a function must vanish. Hence we conclude that
f =0, and therefore

(n=2)N(1...n=2,v) = Ngrr([1...n
This completes the derivation of our BCJ numerator. As
shown in the Supplemental Material [34] N r is crossing
symmetric, hence NV(1...n — 2, v) has the same property,
which leads to Eq. (23). One may also verify Eq. (23) expli-
citly, e.g., at four points we have N/ ([12], v) = N (12, v) —
NQ@Lv)=(v-F,-F,-v)/(2v-p)) = (v-Fy- Fy - v)/
(2v - py) = 2N (12, v).

From HEFT to Yang-Mills.—It is straightforward to
obtain the kinematic algebra, and the BCJ numerators, of
pure YM theory from the HEFT construction, by exploiting
the factorization property of the HEFT amplitude on a
gluon pole [10]. The massive particles decouple on the
pole, and we obtain the BCJ numerator for YM amplitudes:

—2l.0).  (29)
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Y%/ - \(7_/1 (30)

NYM([1...n=1])) = N([1...

The same replacement should be performed on the expres-
sions of the generators of the algebra given in Eq. (9), with
no modification to the fusion rules. We have also explicitly
verified Eq. (30) for D-dimensional YM amplitudes up to
nine points.

The BCJ numerators thus obtained are manifestly gauge
invariant and crossing symmetric for all gluons except the
last one, n — 1. The price to pay is that they also contain
spurious poles of the form 1/(e,_, - P), which, however,
can be eliminated in the complete amplitudes—in practice,
one can use only independent variables (after imposing on-
shell conditions and momentum conservation) in the
amplitudes, then terms with spurious poles should cancel
out, or we can simply drop them by hand.

As for the BCJ numerators, the spurious poles can also
be eliminated explicitly. We take the MHYV sector of the
four-point case as an example to illustrate this idea.
According to Egs. (19) and (30), the corresponding
numerator is

¢ P1°€3P1°€2P3°VV- P
1

( P1°€2P12°€3D2" V" D3
v-€ +v-
UV-p10-P12 v-p10-P13
P1-€2P2°€3P3°V _
—ve =€1°€4P1°€2D12°€3, (31)
v-p1 vey

which is in agreement with [16]. Similarly, we have verified
this in the non-MHV sector in several examples.

A natural question arises as to how the known gener-
alized gauge symmetry of the BCJ numerators in YM
[1,2,47] manifests itself after taking the decoupling limit on
the HEFT numerators. In this limit, the propagator matrix
will become degenerate, which implies that one can add or
subtract terms in its kernel and obtain a family of valid BCJ
numerators.

Finally, we highlight potential connections between our
and other approaches in the literature, e.g., in Refs. [48—
51]. For example, the construction of Ref. [S1] also
maintains gauge invariance and crossing symmetry of
n — 1 external legs, and contains linear spurious poles.
Intriguingly, the numerator of Ref. [51] for n gluons has
2F,_, terms, while ours has F,_,. We also note the
appearance in Ref. [50] of Cayley’s trees in the construction
of BCJ numerators, and it is well known that Fubini
numbers are related to such graphs. It would be interesting
to explore the connections among these approaches.

Conclusions.—In this Letter we constructed a kinematic
algebra that manifests BCJ color-kinematics duality in tree-
level HEFT and YM theory, and showed that it can be

mapped to a quasishuffle Hopfalgebra. Itis intriguing to note
that Hopf algebras have already appeared in several different
contexts in quantum field theory and string theory, e.g.,
renormalization theory [52], symbols and co-actions of loop
integrals [53-56], harmonic sums [57], and string & expan-
sion [58,59]. The obtained kinematic algebra is very simple
in terms of the abstract generators, and a nontrivial aspect of
the construction is the map between these generators and the
kinematic variables (momenta and polarizations), for which
we find a simple closed formula that exhibits manifest gauge
invariance (see, e.g., Refs. [37,51,60-62] for other all-
multiplicity BCJ constructions).

Several questions remain open. First, it would be
interesting to derive our BCJ numerators from a
Lagrangian description, which may expose hidden sym-
metries or structures of the theory. The nonlocalities of the
numerators are both mild and physical in HEFT, thus a
Lagrangian approach seems feasible. It may also prove
fruitful to try to find representations of the generators in the
form of differential operators in kinematic variables, thus
reintroducing kinematics in the fusion rules. On the
mathematical side one may note that a Hopf algebra should
have a coproduct and counit: what do these operations
imply for the numerator and amplitude? The extension of
our construction to loop amplitudes, as well as other
theories, is an important avenue. Finally, it would be
interesting to find a more direct construction of the pure
YM kinematic algebra, without passing through the HEFT.
We leave these questions for future investigation.
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