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Random matrix theory allows one to deduce the eigenvalue spectrum of a large matrix given only
statistical information about its elements. Such results provide insight into what factors contribute to the
stability of complex dynamical systems. In this Letter, we study the eigenvalue spectrum of an ensemble of
random matrices with correlations between any pair of elements. To this end, we introduce an analytical
method that maps the resolvent of the random matrix onto the response functions of a linear dynamical
system. The response functions are then evaluated using a path integral formalism, enabling us to make
deductions about the eigenvalue spectrum. Our central result is a simple, closed-form expression for the
leading eigenvalue of a large random matrix with generalized correlations. This formula demonstrates that
correlations between matrix elements that are not diagonally opposite, which are often neglected, can have
a significant impact on stability.
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Determining the factors that contribute to the stability of
a dynamical system with many interacting components is a
fundamental problem. The theory of large random matrices
demonstrates that we can ascertain the stability of such a
system given only statistical information about its micro-
scopic interactions. As such, random matrix theory (RMT)
has found myriad applications outside its original field of
conception, that of nuclear and atomic physics [1,2], and
has become a rich and active area in its own right [3–7].
Among the diverse range of fields where RMT enjoys a
centrally important role are spin glasses [8–11], complex
ecosystems [12–16], and neural networks [17–21].
As a result of the desire to apply RMTin a greater range of

contexts, its remit has been expanded to encompass an
evermore complete collection of random matrix ensembles.
For example, it has been shown thatWigner’s semicircle law
[1,2] can be generalized for asymmetric matrices, which
have eigenvalues that are uniformly distributed in an ellipse
in the complex plane [22,23]. Allowing for a uniform
nonzero mean for each of the matrix elements gives rise
to an additional outlier eigenvalue [24–27]. Recently, the
eigenvalue spectra ofmore elaborate block-structuredmatri-
ces [28,29] and matrices with element-specific variability
[17,19] have also been investigated.
Despite the aforementioned developments, typically

only correlations between matrix elements that are diago-
nally opposite each other (i.e., aij and aji) are included in
RMT calculations (with the notable exception of Ref. [30],
where cyclic correlations are explored). This is a rather
artificial restriction. In fact, correlations between matrix
elements sharing only one index (e.g., aij and aki) have

been shown to arise organically in dynamically evolved
ecosystems [31], and they appear in contexts as wide-
ranging as statistical inference [32], game theory [33,34],
and data security [35].
The main result of this Letter is a surprisingly simple

closed-form expression for the leading eigenvalue of an
ensemble of large random matrices with generalized
correlations. This includes correlations between elements
that are not transpose pairs. The formula that we derive
demonstrates directly that such correlations can have a
significant impact on stability and therefore should not be
dismissed.
To obtain this result, we have developed a new

analytical approach. We exploit a correspondence between
the resolvent of the random matrix and the response
functions of a linear dynamical system [36]. With this
duality in mind, one can write down the Martin-Siggia-
Rose-Janssen-de Dominicis (MSRJD) [37–41] path inte-
gral for the dynamical system and use field-theoretic
methods to find the response functions. We are thus able
to find the resolvent matrix and, consequently, the leading
eigenvalue.
Our method has several advantages. First, we are able to

demonstrate explicitly that our results do not depend on the
precise distribution from which the matrix elements are
drawn (a property known as universality [42,43]). Further,
the dynamical approach we use has no need for replicas
[44]. Finally, we are able to include the effects of each of
the different correlations in our ensemble one by one,
greatly reducing the complexity of the calculation.
Particularly because of this last property, we believe that
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our analytical approach would lend itself to simplifying
other similarly challenging problems in RMT.
Let us now define more precisely the ensemble of

random matrices on which we will focus. Consider a
square matrix of size N × N whose elements faijg are
drawn from a joint probability distribution. We decompose
the matrix a as follows:

aij ¼ −δij þ
μ

N
þ zij; ð1Þ

where μ=N is the mean of the off-diagonal elements and the
fzijg encode fluctuations about this mean such that hziji ¼
0 (angular brackets indicate an average over realizations of
the random matrix). If a were the Jacobian of a system
linearized about a fixed point, the term −δij in Eq. (1)
would ensure the stability of the system in absence of
interactions. Upon including the interactions encoded by
the fzijg and μ=N, one is able to deduce what statistical
features of the interactions between components tend to
make the system unstable.
We consider the most generic set of pairwise correlations

for the elements zij that do not privilege any position in the
matrix over any other. These are

varðzijÞ ¼
σ2

N
;

corrðzij; zjiÞ ¼ Γ;

corrðzij; zkiÞ ¼
γ

N
;

corrðzij; zikÞ ¼
r
N
;

corrðzji; zkiÞ ¼
c
N
; ð2Þ

where none of the indices i, j, or k take equal values, and
where we use the shorthand corrða; bÞ ¼ ½habi −
haihbi�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðaÞvarðbÞp
for the correlation coefficients.

The scaling of the mean and the variance of each element
with N in Eqs. (1) and (2) ensures a sensible thermody-
namic limit [8,23,25].
We distinguish between two types of correlations in

Eq. (2): type-1 correlations between diagonally opposite
elements [these correlations are OðN0Þ and quantified by
Γ], and type-2 correlations between elements with one
index in common (whose magnitudes are governed by γ, c,
and r). The type-2 correlations must be of the order N−1,
again in order to ensure a sensible thermodynamic limit
[31,33,34].
We do not consider explicitly correlations between

elements that share no indices; the presence of such
correlations can be shown to be produced by a value of
μ that fluctuates between realizations of the random matrix
(see Section I.B of the Supplemental Material (SM) [45]).

We now turn our attention to the eigenvalue spectrum.
Consider the disorder-averaged eigenvalue density, which
is defined as

ρðωÞ ¼
�
1

N

XN
i¼1

δðω − λiÞ
�
; ð3Þ

where the fλig are the eigenvalues of any one realization of
the random matrix. The eigenvalue density is normalized
such that

R
d2ωρðωÞ ¼ 1, where the integral covers the

entire complex plane.
The nonzero mean of the elements of the matrix a

constitutes a rank-1 perturbation to the matrix −1þ z
[24–27]. Previous work thus allows us to anticipate the
general form that the eigenvalue density ρðωÞ will take
[14,25,26]. There are two contributions to the eigenvalue
spectrum: a bulk region, to which the vast majority of the
eigenvalues are confined, and a single outlier that results
from the nonzero mean. An example is shown in Fig. 1.
More precisely, we write

ρðωÞ ¼ ρbulkðωÞ þ
1

N
δðω − λoutlierÞ: ð4Þ

The primary tool that we use for calculating the outlier
eigenvalue and the bulk eigenvalue density is the resolvent
matrix, defined in our case by

G ¼ h½ð1þ ωÞ1 − z�−1i: ð5Þ

FIG. 1. An example eigenvalue spectrum. Crosses represent the
results of numerical diagonalization of computer-generated
random matrices from the ensemble with generalized correla-
tions. The solid line is the ellipse ð1þ xÞ2=ð1þ ΓÞ2 þ y2=ð1 −
ΓÞ2 ¼ σ2 where ω ¼ xþ iy. The red circle is the prediction for
the outlier from Eq. (14). The green triangle is the prediction one
would obtain ignoring type-2 correlations [λΔ ¼ −1þ μþ
Γσ2=μ]. Parameters are N ¼ 4000, σ ¼ 0.7, Γ ¼ −0.4, μ ¼ 1,
γ ¼ 0.7, r ¼ 1.4, and c ¼ 1.6.
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The bulk eigenvalue density can be calculated from only
the trace of the resolvent matrix. We define
Gðω;ω⋆Þ ¼ ð1=NÞPi Giiðω;ω⋆Þ, noting that the resol-
vent may not necessarily be an analytic function of ω. The
bulk spectrum can then be obtained as [23]

ρbulkðωÞ ¼
1

2π
Re

� ∂G
∂ω⋆

�
: ð6Þ

Using established techniques [23,46–48], we find (see
Section III of the SM) that the bulk eigenvalue density
is independent of r, c, and γ (i.e., the type-2 correlations),
and is given by the familiar elliptical law [22,23]

ρbulkðωÞ ¼
� ½πσ2ð1 − Γ2Þ�−1 if ð1þxÞ2

ð1þΓÞ2 þ y2

ð1−ΓÞ2 < σ2;

0 otherwise;

ð7Þ

where ω ¼ xþ iy. This is verified in Fig. 1.
We now turn our focus to finding the outlier eigenvalue

λoutlier, for which the effect of the type-2 correlations is
significant. The outlier eigenvalue satisfies the known
relation [26,49] (see also Section II.A of the SM)

1 −
μ

N

X
ij

GijðλoutlierÞ ¼ 0: ð8Þ

Notably, the off-diagonal elements of the resolvent matrix
are required to find the outlier. Often, the resolvent matrix is
presumed to be diagonal [9,19,29,41], but in the more
general case considered here, the off-diagonal elements
turn out to be crucial.
Two observations aid us in evaluating the resolvent

matrix, including its off-diagonal elements: (i) The resol-
vent is an analytic function of ω outside the bulk region of
the eigenvalue spectrum [see Eq. (6) and Refs. [19,23,50] ];
(ii) When the resolvent is analytic, we can show that the
elements of the resolvent matrix correspond to the response
functions of the following linear dynamical system,

_xi ¼ −xi þ
X
j

zijxj þ hi; ð9Þ

where the fhiðtÞg are external fields. That is, the Laplace
transforms of the response functions Rijðt − t0Þ ¼
hδxiðtÞ=δhjðt0Þi (where we exploit time-translation invari-
ance) are equal to the elements of the resolvent matrix
defined in Eq. (5),

R̂ijðuÞ ¼ GijðuÞ: ð10Þ

This observation is the basis for our calculation. It means
that if we can calculate the response functions of the
dynamics in Eq. (9), we can use Eq. (8) to find λoutlier.

To find the response functions we begin with the MSRJD
generating functional [37–41] of the system in Eq. (9), and
then carry out the disorder average along the lines of
Refs. [44,51,52]. One thus obtains the following path
integral expression for the response functions (see
Section II.C of the SM):

Rijðt − t0Þ ¼ −ihxiðtÞx̂jðt0ÞiS;

h� � �iS ¼
Z

D½x; x̂�½� � ��eS0þSint ; ð11Þ

where
R
D½x; x̂� indicates a functional integral over all

possible trajectories of the coordinates fxiðtÞg and their
conjugates fx̂iðtÞg [40,41].
We identify two contributions to the action in Eq. (11): a

“bare” action, which would still be present if we were to set
r ¼ c ¼ γ ¼ 0, and an “interaction” term, which comes
about due to the type-2 correlations

S0 ¼ i
X
i

Z
dt½x̂iðtÞð_xiðtÞ þ xiðtÞ − hiðtÞÞ�

−
σ2

2N

X
ði;jÞ

Z
dtdt0½x̂iðtÞx̂iðt0ÞxjðtÞxjðt0Þ

þ Γx̂iðtÞxiðt0Þx̂jðt0ÞxjðtÞ�;

Sint ¼ −
σ2

2N2

X
ði;j;kÞ

Z
dtdt0½2γx̂iðtÞxjðtÞx̂kðt0Þxiðt0Þ

þ rx̂iðtÞxjðtÞx̂iðt0Þxkðt0Þ þ cx̂iðtÞxjðtÞx̂kðt0Þxjðt0Þ�:
ð12Þ

The notation ði; j; kÞ indicates that only combinations
where none of the indices take equal values contribute
to the sum. We note that one benefit of the dynamic
formalism presented here is that this action, and therefore
the outlier eigenvalue, can be seen to be universal with
relative ease [42,43] (see SM Section II C).
We now expand the exponential in Eq. (11) in powers of

Sint and write the series expansion for the “dressed”
response functions Rijðt − t0Þ in terms of the bare response

functions Rð0Þ
ij ðt − t0Þ (the response functions of the system

with Sint ¼ 0). This is accomplished using dynamic mean-
field theory, which simultaneously yields an expression for

Rð0Þ
ij ðt − t0Þ. Conveniently, our dynamic approach allows us

to consider each contribution to the interaction action Sint
one by one.
The terms of the series for Rijðt − t0Þ can be represented

efficiently using diagrams [41] (see Fig. 2). These “rain-
bow” diagrams have a structure similar to those represent-
ing quark-gluon interactions [53,54].
The dynamic formulation of the random matrix problem

drastically reduces the complexity of the diagrammatic
series that one has to evaluate. This is the main advantage of
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our approach over established diagrammatic techniques in
RMT [19,54]. A more detailed discussion can be found in
Section II of the SM.
The series expansion of the response function depicted in

Fig. 2 can be evaluated exactly in the limitN → ∞, without
the need for further approximation. We find

1

N

X
ij

R̂ij ¼ R̂ð0Þ½1 − γσ2ðR̂ð0ÞÞ2�−1; ð13Þ

where R̂ð0ÞðuÞ is the average diagonal element of the bare
resolvent matrix, given by R̂ð0ÞðuÞ ¼ ½ð1þ uÞ=2Γσ2� ×
½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Γσ2=ð1þ uÞ2

p
� for j1þ uj > σð1þ ΓÞ

and u ∈ R.
Using the correspondence in Eq. (10) we substitute the

result of Eq. (13) into Eq. (8) and solve for λoutlier. We
finally obtain our central result: a formula for the outlier
eigenvalue,

λoutlier ¼ −1þ μþ μ

2

�
1þ Γ

γ

	� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γσ2

μ2

s
− 1

	
: ð14Þ

This expression is valid when jμj > σð1 − γÞ; there is no
outlier eigenvalue when jμj ≤ σð1 − γÞ. We observe that
λoutlier → −1� ð1þ ΓÞσ when μ → �σð1 − γÞ. That is, the
points at which the expression in Eq. (14) becomes invalid
correspond to the outlier being absorbed into the bulk
region. In the limit γ → 0, we recover from Eq. (14) the
known result λoutlier ¼ −1þ μþ Γσ2=μ [25,26,29], which
is valid when jμj > σ.
We note that the in-row and in-column correlations,

quantified by r and c, respectively, do not appear in
Eq. (14). As such, these correlations do not alter the
eigenvalue spectrum in the thermodynamic limit. This is
in contrast to the correlations quantified by γ, which affect
the outlier eigenvalue significantly. The reason for the
absence of r and c in Eq. (14) is discussed in SM
Section II G.
We test the prediction of Eq. (14) in Fig. 3 using

computer-generated random matrices. The method used

(a)

(b)

FIG. 2. Panel (a) depicts the diagrammatic representation of the
series used to evaluate the response function Rijðt − t0Þ. Panel
(b) indicates the value of the second diagram in panel (a) to
leading order in N−1. Each node is associated with a site index (i,
j, k, etc.). Nodes that are placed closely together have the same
time coordinate and each such pair carries a factor of ðγσ2=N2Þ12.
Directed edges each carry a factor of the bare response function.
Solid undirected arcs connect indices which share the same value
and are summed over [l in the example in panel (b)]. Dashed arcs
indicate indices that are summed, but cannot take the same value
[e.g., k and m in panel (b)].

(a)
(b)

FIG. 3. The leftmost eigenvalue [panel (a)] and the rightmost eigenvalue [panel (b)] as a function of the strength of the type-2
correlations γ for different combinations of the parameters Γ and σ. Symbols are from numerical diagonalization of computer-generated
random matrices, solid lines are the prediction in Eq. (14). The horizontal dashed lines show the edges of the bulk spectrum at
λ�edge ¼ −1� ð1þ ΓÞσ. The values of σ and Γ are such that ð1þ ΓÞσ ¼ 0.98 in panel (a), and ð1þ ΓÞσ ¼ 0.42 in panel (b). In panel (a),
matrix entries are from a Bernoulli distribution with μ ¼ −1.2, r ¼ 1.4, and c ¼ 1.6. In panel (b), matrix entries are constructed from
uniformly distributed random numbers such that μ ¼ 1.2, r ¼ 1, and c ¼ 1. Numerical results are for N ¼ 10 000, averaged over 10
trials.
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to produce random matrices with the correlations in
Eqs. (2) is described in Section IV of the SM.
Figure 3 not only serves to verify the theoretical predic-

tions in Eqs. (14) and (7) and their universality, but it also
demonstrates the extent to which the type-2 correlations
betweenaij andaki (quantifiedby γ) canaffect thepositionof
the outlier. In particular, the presence of these correlations
can give rise to an outlier eigenvalue when there would not
ordinarily be one. As is shown in Fig. 3(b) in particular, this
outlier eigenvalue can become positive, resulting in insta-
bility, purely as a result of varying γ (see also Fig. 1).
To conclude, correlations between pairs of nontranspose

elements (e.g., aij and aki) are routinely neglected in many
problems in randommatrix theory. In thiswork, we developed
a dynamic path-integral approach to take these more subtle
correlations into account. The diagrammatic series we derived
using this approach is far simpler than what one would obtain
with established methods. We thus arrived at an explicit
formula for the leading eigenvalue of an ensemble of random
matrices with correlations between any pair of matrix ele-
ments. Hence, we demonstrated directly that such correlations
can impact stability and therefore should not be ignored.
It is known that correlations between transpose pairs of

interaction coefficients can significantly affect stability in
complex ecosystems [14,52,55,56]. However, the effect of
the correlations that we study has not been explored in this
context (to our knowledge). Interestingly, correlations
between nontranspose interaction coefficients can arise
quite organically in models of complex ecosystems [31].
This indicates one immediate opportunity for the applica-
tion of our results. Additional avenues for future inquiry
present themselves in the context of neural networks, where
increasingly more general interactions between neurons are
being studied [17,19].
We anticipate that the dynamic field-theoretic approach

that we developed would also lend itself to solving other
challenging problems in random matrix theory. For in-
stance, our method complements replica [57–59] or cavity
techniques [60,61] used in the calculation of the spectra of
sparse random matrices, and would perhaps allow for the
generalization of present results. The calculation of other
more complicated ensembles of dense random matrix (such
as those with block structure [15,28,29,62]) could also be
simplified and extended with our approach.
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