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We prove that nested canalizing functions are the minimum-sensitivity Boolean functions for any
activity ratio and we determine the functional form of this boundary which has a nontrivial fractal structure.
We further observe that the majority of the gene regulatory functions found in known biological networks
(submitted to the Cell Collective database) lie on the line of minimum sensitivity which paradoxically
remains largely in the unstable regime. Our results provide a quantitative basis for the argument that an
evolutionary preference for nested canalizing functions in gene regulation (e.g., for higher robustness) and
for plasticity of gene activity are sufficient for concentration of such systems near the “edge of chaos.”
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Canalization in biological systems refers to the capacity
of a dynamical process to reach a definite fate or a product,
despite inherent or external fluctuations. Waddington [1]
and Schmalhausen [2] recognized the significance of
canalization in biological development and evolution early
on, suggesting it as a mechanism that promotes coordinated
response to environmental and genetic perturbations and
suppresses genetic variation. Biological signatures and
implications of canalization are still active research areas
[3–8]. The concept entered the radar of the biophysics
community due to seminal works by Kauffman et al. [9–
12] on gene regulation networks (GRNs), which observed
that canalization is particularly suited to describe the
transcriptional states of genes subject to multiple regulatory
inputs.
A common simplification of regulatory dynamics widely

adopted in the literature is to consider genes to be either on
or off. Despite its simplicity, a binary representation is
sufficient to capture many essential features of the complex
gene expression dynamics [13,14]. In this framework, a
GRN reduces to a Boolean network where the vertices
represent genes, directed edges encode regulatory inter-
actions, and the state of a gene is updated at each time step
by a gene-specific Boolean function. The average tran-
scriptional activity of a gene is largely determined by the
“activity ratio” of its update function which is the fraction
of input combinations that turn the gene “on.”
Canalization, in this narrowed down context, is defined

as the presence of a subset of genes which are privileged in
dictating the output when in a particular “canalizing” state.
Abundance of canalization in real-life GRNs is well
established [7,10] and rationalized both in physical terms,
through the mechanisms of interaction between transcrip-
tion factors and the DNA [15], and in biological terms, by
the advantage it lends the organism through stabilization of

the regulatory dynamics against random fluctuations [16].
In fact, a Boolean network utilizing random vertex update
functions with k inputs on average and a mean activity ratio
p is typically unstable (i.e., sensitive to random fluctuations
of gene expression levels) for

k−1 < 2pð1 − pÞ; ð1Þ

while a network utilizing canalizing rules is not
[11,15,17,18].
This Letter reports observations on a specific subclass of

Boolean functions called “nested canalizing functions”
(NCFs), or “unate cascade functions” [19], for which all
of the inputs manifest the canalizing property in an order of
hierarchy (see Fig. 1). In particular, we prove that NCFs
realize the minimum possible sensitivity (or maximum
robustness) across all Boolean functions subject to a given
activity ratio. Despite numerous studies attesting to the
improved robustness of Boolean network dynamics under
the canalization rule [12,15,20–23], this central mathemati-
cal fact appears to have been overlooked so far. We also
derive a mathematical expression for the sensitivity lower
bound which we find to be a fractal function of the activity
ratio, and finally demonstrate the relevance of our results
to biological systems by measuring the sensitivity of more

FIG. 1. Schematic representation of the decision algorithm for
the output of a nested canalizing function fðs⃗Þ as a function of
the defining parameters fσig and frig, where si; σi; ri ∈ f0; 1g.
The input vector is shaded yellow and the possible outputs are
shaded green.
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than 2000 known regulatory functions and their distance
from the obtained bound.
We start with some preliminaries: (1) A NCF fðs⃗Þ of n

variables s⃗ ¼ ðs1;…; snÞ is a Boolean function which is
canalizing in all of its inputs, as shown in Fig. 1. A NCF is
defined in terms of a set of canalizing (input) values fσig
and canalized (output) values frig as

fðs1; s2;…; snÞ

≡

8>>>>>><
>>>>>>:

r1; if s1 ¼ σ1

r2; if s2 ¼ σ2; s1 ¼ σ̄1

..

.

rn; if sn ¼ σn andsi ¼ σ̄i∀ i∈ f1;…;n− 1g
r̄n; otherwise

; ð2Þ

where si; σi; ri ∈ f0; 1g. The last condition in Eq. (2) (with
the notation r̄n ≡ 1 − rn) ensures that all input variables are
relevant, that is, for all j there exists at least one input s⃗ such
that sj → s̄j changes the output. Relaxing the last condition
yields “generalized NCFs” which may have input variables
inconsequential to the output. (2) The activity, α, of a
Boolean function is the Hamming weight (the number of
“1” s) of the output column in the truth table. It follows that
the activity of a NCF as in Eq. (2) can be expressed in base
two as

αNCF ¼ ðr1r2::rn−11Þ2: ð3Þ

Since the ith condition in Eq. (2) dictates a truth value for
2n−i inputs. The activity ratio is accordingly given by
p ¼ α=2n. (3) The sensitivity, ξi½f�, of a Boolean function
to its ith input is defined as the fraction of states for which
si → s̄i flips the output. The overall sensitivity ξ½f� is then
their sum

P
i ξi½f�, or

ξ½f� ¼ 2−n
Xn
i¼1

X
fsjg

fð::; si; ::Þ ⊕ fð::; s̄i; ::Þ; ð4Þ

with ⊕ representing the “xor” operation. Since an average
over all inputs is evaluated by the inner summation in
Eq. (4), ξ½f� for a NCF is independent of the choice of
canalizing inputs fσig. Furthermore, we show below that it
is uniquely determined by the activity ratio. A tight upper
bound of 4=3was derived earlier for the sensitivity of NCFs
[24], while for a random Boolean function with n inputs
one can calculate the average sensitivity to be ξ ¼ n=2 [25].
The stability—in the Lyapunov sense—of the discrete-time
dynamics on a Boolean network can be approximated by
the average of vertex sensitivities given in Eq. (4) [26,27].
The boundary separating stable and chaotic regimes is
at ξ ¼ 1.

In order to prove that the NCFs are the minimum-
sensitivity Boolean functions for given ðn; αÞ, we employ a
geometric approach: A Boolean function with n inputs can
be mapped to an n-dimensional hypercube graph, Cn, where
each vertex (corner) of the hypercube represents one of 2n

possible inputs and the vertex color encodes the corre-
sponding output (white for “0” and dark gray for 1 in
Fig. 2). In this picture, the sensitivity of a Boolean function
f, given in Eq. (4), becomes ξ½f� ¼ b½f�=2n−1, where b½f�
counts the edges which have different terminal colors,
henceforth called “boundary edges” (shown in red in
Fig. 2).
A lower bound on the sensitivity ξ is provided by

spectral graph theory, by means of a well-known inequality
about the number of edges connecting two disjoint subsets
of vertices in a graph [28]. For a Boolean function which
splits the vertices of a hypercube graph into two such sets
according to their color, the inequality translates to
ξ½f� ≥ 2λpð1 − pÞ, where p is the activity ratio of the
function f and λ ¼ 2 is the smallest nonzero eigenvalue of
the graph Laplacian for Cn (see Sec. S1 in the Supplemental
Material [29] for further details). The similarity between
this bound and Eq. (1) is not coincidental. The role of λ on
the stability of network dynamics is well documented and
has multiple applications (see, e.g., Refs. [30,31] and
references therein).
We now outline a proof by induction for the fact that the

sensitivity minimum is realized by NCFs. To this end, let
Bn;α be the set of all Boolean functions with n inputs and
activity α, and let βðn; αÞ be the number of boundary edges
of the NCF in Bn;α. Our objective is to prove that

βðn; αÞ ¼ min
f∈Bn;α

b½f�; ∀ n; α: ð5Þ

We first seed the induction with n ¼ 2. NCFs with
α ¼ 1, 2, and 3 (for example, s1 ∧ s2, s1, and s1∨s2,

FIG. 2. The hypercube representation and the boundary edges
(red) for a NCF with fr1; r2; r3g ¼ f0; 1; 1g. The hyperfaces
which correspond to the canalization condition si ¼ σi at each
decision step of Fig. 1 are shaded green. The presented proof by
induction rests on the observation that the hyperface s1 ¼ σ̄1
itself encodes a NCF whose sensitivity can be related to that of f
(and iteration of this observation to lower dimensions).
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respectively) have exactly two boundary edges. And we
observe that

βð2; αÞ ¼ 2 ¼ min
f∈B2;h

b½f�; for α ¼ 1; 2; 3 ð6Þ

since any nonuniform coloring of C2 (square graph) will
yield at least two boundary edges. α ¼ 0, 4 correspond to
constant functions (which, too, are NCFs in the generalized
sense) and trivially realize the minimum, since bð2; 0Þ ¼
bð2; 4Þ ¼ 0.
Now, assume that Eq. (5) is true for functions with

2; 3;…; n − 1 variables (the induction hypothesis) and
prove it for n. Consider the following search algorithm
for minf∈Bn;α

b½f�: We distribute α black corners of Cn to
two opposite Cn−1 hyperfaces by α1 and α − α1, thus
defining two functions f1 ∈ Bn−1;α1 and f2 ∈ Bn−1;α−α1 .
The number of boundary edges connecting the two hyper-
faces is at least jα − 2α1j, while the remaining ones on the
hyperfaces add up to b½f1� þ b½f2�, by definition. Then, it
suffices to show that no such assignment will yield a total
number of boundary edges smaller than that of a NCF, i.e.,

βðn; αÞ ≤ b½f1� þ b½f2� þ jα − 2α1j
∀ f1 ∈ Bn−1;α1 and ∀ f2 ∈ Bn−1;α−α1 ð7Þ

subject to α ≤ 2n, α1 ≤ 2n−1, and α − α1 ≤ 2n−1. By the
induction hypothesis, a sufficient condition for Eq. (7) is

βðn;αÞ≤ βðn− 1;α1Þþ βðn− 1;α−α1Þþ jα− 2α1j; ð8Þ

which we prove below.
Without loss of generality, we assume α ≤ 2n−1 (more

white corners than black), since f → f̄ (inverting colors)
preserves both the sensitivity and the NCF designation. As
a corollary,

βðn; αÞ ¼ βðn; 2n − αÞ: ð9Þ

Also, since all α black corners of the NCF lie on the
hyperface s1 ¼ σ̄1 (see Fig. 2), the boundary edges between
it and the opposite (all white, s1 ¼ σ1) face is α. This yields
the recursion relation

βðn; αÞ ¼ βðn − 1; αÞ þ α: ð10Þ
The proof of Eq. (8) rests on using Eqs. (9) and (10) in
conjunction with the induction hypothesis. We consider
two disjoint intervals of the activity α separately: (i). Case
I: α ≤ 2n−2.—Employing the method of induction, we
assume Eq. (8) is satisfied for n → n − 1:

βðn − 1; αÞ ≤ βðn − 2; α1Þ þ βðn − 2; α − α1Þ þ jα − 2α1j:

Note that both α1 and α − α1 above are within the allo-
wed range (≤ 2n−2). Substituting Eq. (10) in the form

βðn − 1; αÞ ¼ βðn; αÞ − α above, first arguments of the
three βð·Þ terms can be promoted by one to reach the
sought relation in inequality (8). (ii). Case II: 2n−2 <
α ≤ 2n−1.—The argument used in Case I still applies when

α − 2n−2 ≤ α1 ≤ 2n−2: ð11Þ

For the remaining values of α1 on either side of the interval
in Eq. (11), we make use of an auxiliary relation which
follows from Eqs. (9) and (10):

βðn − 1; α − 2n−2Þ ¼ βðn; αÞ þ α − 3 × 2n−2: ð12Þ

On the left of the interval in Eq. (11), 0 ≤ α1 ≤ α − 2n−2,
we again employ the induction hypothesis by assuming
equation (8) is satisfied with n → n − 1 and α → α − 2n−2:

βðn − 1; α − 2n−2Þ ≤ βðn − 2; α1Þ
þ βðn − 2; α − 2n−2 − α1Þ
þ jα − 2n−2 − 2α1j ð13Þ

and substitute Eq. (12) and (10) to obtain

βðn; αÞ ≤ βðn − 1; α1Þ þ βðn − 1; α − α1Þ
þ 2n−2 − 2α1 þ jα − 2n−2 − 2α1j: ð14Þ

The desired relation in Eq. (8) follows from Eq. (14) by
algebra (Sec. S2 in the Supplemental Material [29]).
Finally, on the right of the interval in Eq. (11),

2n−2 ≤ α1 ≤ α, the Eq. (13) can be used again after
replacing α1 by ðα1 þ 2n−2Þ, yielding

βðn; αÞ ≤ βðn − 1; α1Þ þ βðn − 1; α − α1Þ
þ 2α1 − 2αþ 2n−2 þ jαþ 2n−2 − 2α1j; ð15Þ

which reduces to Eq. (8) after minimal algebra, completing
the proof. A full derivation with all intermediate steps is
given in the Supplemental Material [29], Sec. S2.
We have shown that a NCF has the minimum sensitivity

across Boolean functions in Bn;α. We now investigate this
minimum as a function of the activity ratio. Let us first
observe that such a function exists: Note that Bn;α accom-
modates exactly one NCF. If α is even, it has one or more
irrelevant arguments which can be discarded to yield a NCF
with less variables and odd α [consistent with Eq. (2)].
Since the number of boundary edges is halved after
discarding each irrelevant argument, that is, βðn; αÞ ¼
2βðn − 1; α=2Þ for α even, we observe that both the activity
ratio p ¼ α=2n and the sensitivity ξNCF ¼ βðn; αÞ=2n−1 are
preserved in the reduction process. Therefore, the sensi-
tivity of a NCF for a given activity ratio is unique. We can
then define the function ξNCFðpÞ, the exact lower bound for
the sensitivity of Boolean functions subject to a given
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activity ratio, as the closure of the set of points
ðp; ξNCFÞ; ∀ n; α (see Sec. S3 in the Supplemental
Material [29]). ξNCFðpÞ is given in Fig. 3 and can be
compared with the lower bound derived above from
spectral graph theory. Its evidently self-similar structure
(also hinted at in Ref. [32]) is a consequence of the
recursion relation

ξNCFðpÞ
2

¼ ξNCF

�
p
2

�
−
p
2
; ð16Þ

which follows from Eq. (10). In fact, Eq. (16) and the
symmetry condition ξNCFðpÞ ¼ ξNCFð1 − pÞ by Eq. (9)
comprise a complete mathematical description of ξNCFðpÞ,
together with the boundary condition ξNCFð1Þ ¼ 0. By
inspection (analytical and also visual from Fig. 3), we find
that ξNCFðpÞ ≥ 1 (i.e., at or above the order or chaos
boundary) when p ∈ ½ð1=6Þ; ð5=6Þ� and ξNCFðpÞ < 1 oth-
erwise. The significance of the shape of ξNCFðpÞ, known as
the “blancmange curve” or “Takagi curve” [33], for the
accumulation of biological networks at the edge of chaos
(previously reported in Ref. [6]) is discussed below.
Having characterized the lower bound on the sensitivity,

we next ask whether it is consequential to biology at all.
Hence, we downloaded all regulatory functions of the 78

biochemical networks in the Cell Collective database [34]
which contains models curated from earlier published
studies on a wide selection of cellular processes in multiple
organisms. Out of 3460 regulatory functions, we discarded
1310 which take a single variable as input (they convey no
valuable information for our study) and calculated the
activity ratio and sensitivity for the rest, using Eq. (4).
Superimposing the resulting scatter plot with ξNCFðpÞ in

Fig. 3 reveals the biological significance of the calculated
exact minimum. For comparison, the range of sensitivities
for an ensemble of randomized functions (obtained by
shuffling the truth table of each function in the database) is
also shown as an overhanging gray region in the same
figure. It is remarkable that most of the biological regu-
latory functions are situated on the minimal curve and the
rest are visibly closer to it than their random counterparts.
For a quantitative assessment of this observation, we define
the “normalized excess sensitivity” of a regulatory function
as δ½f�≡ ξ½f�=ξNCFðpfÞ − 1. In Fig. 4(a), we show the
distribution of δ for the functions in the Cell Collective
database and for their randomized versions. The dominat-
ing feature of the shown distributions is the peak at δ ¼ 0
which reflects the fact that all but 215 functions out of 2150
in Cell Collective lie on the sensitivity minimum (i.e., are
NCFs, consistent with an earlier analysis on a smaller
set [10]). The remaining 10% (non-NCFs) have hδi ≃ 0.2,
as opposed to hδi ≃ 0.85 for the randomized functions.
It is interesting to consider our findings in conjunction

with a recent analysis on the same dataset by Daniels et al.
[6], which found an impressive concentration around the
order-chaos boundary ξ ¼ 1 (also reproduced here on side
panel of Fig. 3). The observation serves as a confirmation
of the well-known “edge-of-chaos” hypothesis by
Kauffman, which posits that most biological systems are
tuned to remain in the vicinity of the critical point [13,16],
striking a balance between robustness to transient environ-
mental changes and adaptability to persistent shifts.
Mechanisms leading to criticality in living organisms are
still unclear [35,36]. Our results underline the somewhat
counterintuitive fact that, gene regulatory networks not

FIG. 3. Sensitivity vs activity ratio for NCFs corresponding the
minimum of ξðpÞ (solid) as proven here, and for biological
examples from from Cell Collective database [34] (circle) with
hot colors representing higher frequency of occurrence in the
database. Activity and sensitivity histograms for the latter are also
shown on the side panels. Note that, the sensitivity histogram has
been discussed earlier in Ref. [6]. The shaded region corresponds
to 1σ neighborhood of the mean sensitivity for randomized
versions of the biological examples. The horizontal red line
marks the stability boundary (edge of chaos). The lower bound
adopted from spectral graph theory in the text is also shown
(dashed).

FIG. 4. (a) The histogram for the percentage deviation from the
sensitivity minimum ξNCFðpÞ, for the regulatory functions in the
Cell Collective database and their randomized counterparts.
(b) The probability of finding ξ ∈ ½1 − x; 1þ x� for functions
in the Cell Collective database (blue), NCFs (black), and random
Boolean functions with n ¼ 3, 4, 6, and 10 inputs.
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only “live at the edge of chaos,” but they also barely stray
away from the boundary of minimum sensitivity. Upon
inspection, this is facilitated by the abundance of functions
with two or three inputs in the dataset (hot spots in Fig. 3),
which induces a bias for certain activity ratios (Fig. 3, top
panel) with ξ ¼ 1. Yet, it is evident that the shape of
ξNCFðpÞ favors the vicinity of the critical point, even in the
absence of any activity bias. Figure 4(b) shows that the
sensitivities of 50% and 85% of NCFs selected randomly
from a uniform distribution on p remain within 1� 0.25
and 1� 0.35, respectively.
We conclude that, a selective pressure for robustness

combined with a sufficient spread in the distribution of
activity ratios suffices for the gene regulatory functions to
populate the neighborhood of marginal stability, although
an additional preference for a small number of regulatory
inputs per gene appears responsible for the sharp peak
observed at ξ ¼ 1 for biological functions [6] (compare
blue and black curves in Fig. 4). Thus, the exact bound
ξNCFðpÞ we report here offers a quantitative reference point
which helps one gauge the role and the limits of the
competition between robustness and plasticity in shaping
the marginal stability of these systems.
Finally, it is worth noting that, although the network

sensitivity can be expressed as hξαi (averaged over the
network nodes, α) in an annealed approximation, exis-
tence of correlations between the inputs of different nodes
generally necessitates a more refined treatment [15,37,38].
It would be interesting to investigate the limits of sensitivity
at the network scale, in conjunction with the bound derived
here at the node level.
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