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We demonstrate theoretically that the thermal Hall effect of magnons in collinear antiferromagnetic
insulators is an indicator of magnetic and topological phase transitions in the magnon spectrum. The
transversal heat current of magnons caused by a thermal gradient is calculated for an antiferromagnet on a
honeycomb lattice. An applied magnetic field drives the system from the antiferromagnetic phase via a
spin-flop phase into the field-polarized phase. In addition to these magnetic phase transitions, we find
topological phase transitions within the spin-flop phase. Both types of transitions manifest themselves in
prominent and distinguishing features in the thermal conductivity, which changes by several orders of
magnitude. The variation of temperature provides a tool to discern experimentally the two types of phase
transitions. We include numerical results for the van der Waals magnet MnPS3.
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Introduction.—In electronic systems, details of the
electronic structure and the magnetic configuration mani-
fest themselves in the transport properties. As an example,
the quantum anomalous Hall effect, in which the trans-
versal transport coefficient is quantized, is a clear signature
of a topologically nontrivial phase. Moreover, topological
phases of the electronic states can be clearly identified
spectroscopically, e.g., in topological insulators [1–5].
The field of topology is not restricted to fermions, but

also applies to bosons. The topological features of phonons
[6–13], photons [14–18], and magnetic excitations [19–27],
however, are more subtle due to the lack of the Pauli
exclusion principle and quantized transport. In this Letter,
we focus on magnons because they are easily manipulated
by external magnetic fields. The identification of magnon
edge states, the hallmarks of a nontrivial system, is
notoriously difficult. On the one hand, angle-resolved
photoelectron spectroscopy cannot be applied at all and
spin-polarized scanning tunneling spectroscopy has severe
restrictions [28–33]. On the other hand, inelastic neutron
scattering succeeds in detecting gapped bulk spectra, but
fails in resolving edge modes [34]. These apparent short-
comings call for identifying clear signatures of magnetic
and topological phase transitions.
In this Letter, we aim at bridging the apparent gap

sketched in the preceding paragraph. For this purpose, we
investigate theoretically an antiferromagnet that exhibits
spin-split, nonreciprocal magnon bands and both magnetic
and topological phase transitions induced by an applied
magnetic field. These phase transitions show up as clear
characteristic signatures in the field and temperature
dependence of the thermal Hall conductivity, which are
explained by the magnonic band structure and the Berry

curvature. In order to convey the strong tunability and
sensitivity of the thermal Hall effect, we calculate the
thermal Hall magnetoconductivity at two selected phase
transitions. Our findings suggest a means for identifying
magnetic and topological phases via transport measure-
ments, which could be especially attractive in two-
dimensional materials, for which other methods are imprac-
tical (e.g., neutron scattering due to low signal intensities).
Conversely, they insinuate a way to externally control the
thermal Hall effect due to the significant changes across the
phase transitions. The numerical results for MnPS3, which
is known for its nontrivial magnon transport [35], ask for
comparison with experimental data.
Previous reports addressed thermal Hall effects in col-

linear ferromagnets with Dzyaloshinskii-Moriya interaction
(DMI) and dipolar interactions [19,20,24,36–61], in weak
ferromagnets with scalar spin chirality or due to magnetic
fields [62–76], in noncollinear antiferromagnets [77], or in
paramagnets [13,42,45,62,78–83]. Here, we present a ther-
mal Hall effect in collinear antiferromagnets without
DMI, which may even be present without external fields.
While noncollinear antiferromagnets rely exclusively on
their magnetic order to break an effective time-reversal
symmetry (which is a prerequisite for the thermal Hall
effect), collinear antiferromagnets additionally rely on the
symmetry-breaking effect of the crystal, e.g., due to non-
magnetic atoms. The underlying mechanism is the mag-
nonic analog of the Hall effect reported in Ref. [84].
Model and methods.—We consider a magnet on a two-

dimensional (2D) honeycomb lattice (in the xy plane;
depicted in Fig. 1). In the ground state without a magnetic
field, the spins of sublattice A (B) point in the þz (−z)
direction.

PHYSICAL REVIEW LETTERS 128, 117201 (2022)

0031-9007=22=128(11)=117201(8) 117201-1 © 2022 American Physical Society

https://orcid.org/0000-0002-9711-3479
https://orcid.org/0000-0002-8599-9209
https://orcid.org/0000-0003-0764-0214
https://orcid.org/0000-0001-8488-0997
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.117201&domain=pdf&date_stamp=2022-03-14
https://doi.org/10.1103/PhysRevLett.128.117201
https://doi.org/10.1103/PhysRevLett.128.117201
https://doi.org/10.1103/PhysRevLett.128.117201
https://doi.org/10.1103/PhysRevLett.128.117201


The spin Hamiltonian

H ¼ HNN þHon þHB ð1Þ

comprises the coupling of nearest-neighbor spins,

HNN ¼ 1

2ℏ2

X

hiji
S⊺i

0
B@

Jþ Ja cosθij −Ja sinθij 0

−Ja sinθij J − Ja cosθij 0

0 0 Jz

1
CASj

ð2Þ

(ℏ reduced Planck constant). Both in- and out-of-plane spin
components are coupled antiferromagnetically, but with
different strengths (Jz > J > 0). The traceless and sym-
metric coupling, introduced by Ja, originates from spin-
orbit coupling [85]. It is related to the nearest-neighbor
bonds hiji by the bond-dependent angles θij ¼ 0, 2π=3,
and −2π=3 (cf. angles near bonds in Fig. 1). The classical
collinear configuration favored by J and Jz is maintained as
long as Ja is sufficiently small.
This model was proposed for manganese thiophosphate

MnPS3 in Ref. [85] and it produces a nonreciprocal
magnon spectrum. Wildes et al. did not find signatures
of an asymmetric band structure in MnPS3 and ruled out the
presence of DMI [86], another source of nonreciprocity
[87]. However, bond-dependent exchange interaction Ja is
allowed by symmetry [85], consistent with results from
neutron resonance spin echo spectroscopy [88], and cannot
be excluded due to the limited experimental resolution in
Ref. [86]. Nevertheless, further insights into the spin-spin
interactions are desirable, for example, by comparing
experimental results with our predictions for the transport
properties.
We extend the model of Ref. [85] by considering an

on-site anisotropy

Hon ¼ −
A
ℏ2

X

i∈A
ðSzi Þ2 ð3Þ

for the spins on sublattice A, which breaks the inversion
symmetry on the level of the Hamiltonian. It may be
brought about by placing the sample on a substrate or in a
heterostructure (e.g., on a transition-metal dichalcogenide),
thereby producing local environments of the atoms that
differ for the two sublattices [89]. The anisotropy translates
into a sublattice-dependent on-site potential of the
magnons.
The Zeeman Hamiltonian

HB ¼ gμBBz

ℏ

X

i

Szi ð4Þ

(g is g-factor, μB is Bohr magneton) accounts for an out-of-
plane magnetic field that destabilizes the antiferromagnetic
(AFM) order and induces magnetic phase transitions.

Below the critical magnetic field BðmÞ
1 , defined by

gμBB
ðmÞ
1 =S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3Jz þ AÞ2 − 9J2

q
− A; ð5Þ

the classical ground state is a collinear antiferromagnet

with a Néel vector pointing in the z direction. Between BðmÞ
1

and BðmÞ
2 ,

gμBB
ðmÞ
2 =S ¼ 3Jz þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9J2 þ A2

p
− A; ð6Þ

the system is in a coplanar spin-flop (SF) phase, and in the

field-polarized (FP) phase (fields larger than BðmÞ
2 ) all spins

point along þz. The ground state’s spin configuration has
been obtained by analytical and numerical methods; for
details see the Supplemental Material [90].
For the thermal Hall conductivity [38]

κxy ¼ −
k2BT
ℏV

X

k

XN

n¼1

c2½ρðεn;kÞ�Ωn;k; ð7Þ

(T temperature, kB Boltzmann’s constant, V volume), a
large Berry curvature Ωnk at low energies εnk, which enter
the weight function c2½ρðεÞ�, are relevant. More details can
be found in the Supplemental Material [90].
We continue with MnPS3: Jz ¼ 1.541 meV, J ¼

1.54 meV, Ja ¼ 0.02 meV, and S ¼ 5=2 [86,94].
Regarding the on-site anisotropy A, we consider two cases.
First, the bulk properties of MnPS3 are modeled by setting
A ¼ 0. Second, we account for a substrate by setting
A ¼ 0.1meV, which is a realistic value in the range of
predictions by ab initio calculations for other van der Waals
magnets [89]. Our choice for A renders the respective
calculations semiquantitative, since the precise numerical
value of A depends on the selected substrate.

FIG. 1. Honeycomb lattice with antiferromagnetically coupled
spins on sublattices A (blue) and B (orange). The spin configu-
ration shown here is paradigmatic for the spin-flop phase with
A ≠ 0 and a magnetic field applied along −z.
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Below, we describe and explain the field-dependent Hall
conductivity κxyðBzÞ for increasing field starting at zero.
Magnetic (m) and topological (t) phase transitions occur at

B1 < BðtÞ
2 < BðtÞ

3 < BðmÞ
2 . If a topological and a magnetic

phase transition coincide (e.g., at B1), the notation BðmÞ

and BðtÞ becomes redundant. Changes in κxy are traced
back to the evolution of the magnon spectrum and the
Berry curvature. In addition to the descriptions and figures
provided here, animations are available in the Supplemental
Material [90].
Discussion of results for bulk MnPS3.—For A ¼ 0 and

zero magnetic field, the AFM phase is invariant under
simultaneous space inversion P and time reversal T, which
causes Ωnk ¼ 0 and, thus, κxy ¼ 0. The otherwise degen-
erate magnon bands are spin-orbit split by Ja ≠ 0, with the
exception of the Γ and K0 points in the Brillouin zone
(BZ) [85].
A small magnetic field breaks PT symmetry and lifts the

band degeneracies at Γ and K0, which brings about Berry
curvature of opposite sign [Ω1k > 0 at Γ, Ω1k < 0 at K0 as
displayed in Fig. 3(a)]. The higher thermal occupation of
the states around Γ and the minus sign in Eq. (7) explain
that κxy is negative. The higher the temperature, the larger
the occupation at Γ and the larger jκxyj.
As the field strength increases, the positive Berry

curvature around Γ is gradually redistributed toward the
K points and the negative Berry curvature at K0 extends
toward Γ (cf. Supplemental Material, Video 1 [90]), which
explains the nonmonotonic behavior of κxy.
At the first-order AFM-SF phase transition at gμBB

ðmÞ
1 ¼

0.416 meV, also identified by a diverging susceptibility,
bothA andB spins are abruptly rotated into the xy plane but
obtain a small (ferromagnetic) component parallel to the
magnetic field. In Fig. 2(a), this redirection is seen in the
angles θA and θB between the xy plane and the spins (inset:
A blue, B orange) and in the jump of the magnetization
from zero to negative values. The experimentally measured
critical field in the range of gμBB1 ¼ 0.42–0.54 meV
[97,98] agrees reasonably well with our analysis.
In the SF phase, the lower band is pinned at zero energy

at Γ due to the continuous rotational symmetry of the
classical ground state energy that is spontaneously broken
by the noncollinear ground state [99]. The Berry curvature
of band n ¼ 1 is dominantly positive, and the Chern
number C1 jumps from 0 to −1. Thus, the magnetic phase
transition is accompanied by a topological phase transition
and jκxyj is abruptly increased.
Ramping up the magnetic field further, the large Berry

curvature around Γ [cf. Fig. 3(b)] becomes redistributed to
high-energy magnons [cf. Fig. 3(c)], with the consequence
that jκxyj decreases with the B field [cf. Fig. 2(b)].
The second topological phase transition at gμBB

ðtÞ
2 ¼

1.901 meV is attributed to a band inversion. The Chern
numbers of both bands are interchanged; that is,

C1 ¼ −1 → C1 ¼ þ1. This band inversion occurs near

the BZ edge: just before BðtÞ
2 , e.g., jgμBBzj ¼ 1.8 meV,

the dominating positive Berry curvature appears near the
BZ edge and is spread along kx [red in Fig. 3(c)]. And after
the transition, e.g., at jgμBBzj ¼ 2 meV, this dominating
Ωnk has changed sign [blue in Fig. 3(d)]. As a consequence,
the band inversion manifests itself in κxy prominently at
elevated temperatures, for which it even causes sign
changes [cf. red line in Fig. 2(b)].
The band inversion is reversed again (C1 ¼ þ1 →

C1 ¼ −1) at gμBB
ðtÞ
3 ¼ 13.368 meV, again most clearly

seen in κxy at 30 K, which, as before, features a sign change.

Approaching BðtÞ
3 the elongated distribution of the Berry

curvature seen for BðtÞ
2 becomes concentrated around the K

and K0 points, and the band inversion then occurs at these
points at the BZ edge (cf. Supplemental Material, Video 1
[90]). In short, the higher the temperature (but still well
below the ordering temperature), the stronger κxy reflects
the topological phase transitions.
The second-order magnetic SF-FP phase transition at

gμBB
ðmÞ
2 ¼ 23.107 meV, also identified by a jump in the

FIG. 2. Magnetic, topological, and transport properties of
(bulk) MnPS3 (A ¼ 0). (a) Classical ground state magnetization
versus magnetic field. Inset: angles θA and θB of the sublattice A
(blue) and B (orange) spins with the xy plane. (b) Thermal Hall
conductivity κxy for four selected temperatures (T ¼ 1.0, 4.2, 15,
and 30 K). The white, blue, red background color indicates
topological phases with Chern numbers C1 ¼ 0;−1;þ1 of the
lowest magnon band. Dashed red lines mark the magnetic phase

transitions at the critical fields BðmÞ
1 and BðmÞ

2 . All four panels have
logarithmic ordinates and abscissae with linear-scale segments
around 0, which are identified by equally spaced minor ticks.
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susceptibility, shows clear temperature-dependent signa-
tures in κxy [Fig. 2(b)]. On the one hand, the dominating
positive contribution of the Berry curvature is located at the
BZ edges (magnons with higher energies); on the other
hand, a small annular, negative contribution shows up near

the BZ center (low-energy magnons) [Fig. 3(e)]. Thus, the
weighting between these competing contributions can be
altered by the occupation of the respective magnon states
and, therefore, by the temperature. To be more specific, low
temperatures freeze out the high-energy contribution,
allowing the small low-energy contribution to dominate
in the transport and leading to a peak with a sign change
in κxy. At elevated temperatures, however, magnons
with positive Ωnk are significantly populated. Since the
high-energy contribution, being induced by the topological
phase transition, exists independently of the magnetic
phase transition, it does not show up as a pronounced peak.
At the transition point, the in-plane Néel vector vanishes.

The FP phase is hence characterized by a saturated classical
magnetization [cf. Fig. 2(a)]. Beyond this second-order
transition the magnetic field shifts both bands to higher
energies, thereby suppressing thermal transport (κxy → 0)
[Fig. 2(b)].
Based on the above, we conclude that κxy exhibits clear

signatures of magnetic phase transition at low temperatures
and of topological phase transitions at higher temperatures.
Thermal Hall magnetoconductivity.—The previous

analysis revealed the need for a quantity that precisely
measures the sensitivity of κxyðBzÞ on the phase transitions.
In analogy to the magnetoresistance, we define the thermal
Hall magnetoconductivity (THMC) as

THMC ¼
����
κxyðBz þ ΔBzÞ − κxyðBz − ΔBzÞ
κxyðBz þ ΔBzÞ þ κxyðBz − ΔBzÞ

����: ð8Þ

By definition, the THMC corresponds to the relative
change of κxy upon the phase transition at Bz. In Fig. 4,
the THMC is shown versus temperature for (i) the AFM-SF
transition (blue line) and (ii) for the topological phase

transition at BðtÞ
2 (orange line) [100]. For (i) the THMC is

close to one near 1 K and monotonically decreases with
temperature. (ii) The topological phase transition shows
the expected behavior, i.e., the THMC is small at low
temperatures, indicating that κxy does not change by much,

FIG. 3. (a–e) Magnon band structures and Berry curvatures of
(bulk) MnPS3 (A ¼ 0) for selected strengths jgμBBzj of the
magnetic field. Magnon-dispersion and Berry-curvature panels
appear in pairs, indicated by a common gray background, with
identical strength of the magnetic field (in meV; the positioning
with respect to the phase transitions is sketched at the bottom).
The magnon energies εnk (in meV) are shown along high-
symmetry lines of the first Brillouin zone; the Berry curvatures
Ω1k of the lowest band are displayed as color maps in reciprocal
space (the black hexagons indicate the first BZ). The kx and ky
axes are given in Å−1. Parameters are chosen as in Fig. 2. For an
animation, see Supplemental Material, Video 1 [90].

FIG. 4. Thermal Hall magnetoconductivity as a function of
temperature T at the AFM-SF transition B1 (blue line) and the

second topological phase transition BðtÞ
2 (orange line).
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when the topological transition is crossed, but it escalates
and takes values close to 175% at 30 K. Based on these
results, the drastic changes of κxy at the phase transitions
can be exploited for a “thermal Hall switch,” in which the
transverse heat current (or the transverse temperature
gradient) is controlled by the external field.
Results for MnPS3 on a substrate.—A substrate or a

heterostructure that breaks the sublattice symmetry is
mimicked by setting A ¼ 0.1 meV. There are three key
differences to bulk MnPS3 (A ¼ 0): (i) The AFM-SF
transition becomes continuous. (ii) The nonmagnetic atoms,
which are responsible for A ≠ 0, break an effective time-
reversal symmetryPT and a thermalHall effect in a collinear
antiferromagnet without a magnetic field ensues. A similar
situation has been reported for the anomalous Hall effect in
an electronic system [84]. (iii)A opens a trivial gap in the FM
phase and it dominates over Ja. Since the AFM phase is
always trivial, there are no topological phase transitions.We
present the magnon spectra, Berry curvature, thermal Hall
effect, and heat capacity for A ¼ 0.1 meV in the
Supplemental Material [90].
Wrap up.—Our theoretical investigation of the tempera-

ture and magnetic-field dependence of the transversal heat
conductivity κxy of a honeycomb magnet proves that κxy is
very sensitive to the magnetic structure at low temperatures:
it exhibits pronounced peaks at the magnetic phase tran-
sitions, but is rather unaffected by topological phase
transitions. Conversely, κxy traces the topological phase
transitions at high temperatures, but is insensitive to the
magnetic transitions. Its reading may change several orders
near a phase transition and it may also change sign. To
paraphrase, magnetic and topological phase transition
cause distinct signatures in κxy, the measurement of which
may be used to identify the phase transitions. On the other
hand, the strong change under the phase transitions may be
exploited as a thermal Hall switch in which the transport
properties are manipulated by external means.
Detecting topological (edge) magnons is more difficult

than for electrons, since transport of bosons is not quan-
tized—what is a clear signature of nontrivial topology in
electronic systems. Instead, κxyðBÞ may be investigated as
an indicator, its prominent features provide evidence to
infer the existence of topological magnons. Although there
are other sources of drastic changes in κxyðBÞ, a combi-
nation with measurements of, e.g., heat capacity CVðBÞ,
which is insensitive to topology, could be used to verify the
topological nature of the signatures (proof of concept in
Supplemental Material [90]).
Our findings call for experimental validation.

The numerical results for MnPS3 suggest that κxy lies
within the experimentally accessible range. We point out
that extraordinarily high fields would be required for
mapping the entire phase diagram. Nonetheless, the
antiferromagnet–spin-flop transition and the topological
transition at 2.202 meV are experimentally amenable.

This work is funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) –
Project-ID 328545488 – TRR 227, project B04.
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