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The interplay between interaction and disorder-induced localization is of fundamental interest. This
article addresses localization physics in the fractional quantum Hall state, where both interaction and
disorder have nonperturbative consequences. We provide compelling theoretical evidence that the loca-
lization of a single quasiparticle of the fractional quantum Hall state at filling factor ν ¼ n=ð2nþ 1Þ has a
striking quantitative correspondence to the localization of a single electron in the (nþ 1)th Landau level.
By analogy to the dramatic experimental manifestations of Anderson localization in integer quantum Hall
effect, this leads to predictions in the fractional quantum Hall regime regarding the existence of extended
states at a critical energy, and the nature of the divergence of the localization length as this energy is
approached. Within a mean field approximation, these results can be extended to situations where a finite
density of quasiparticles is present.
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Introduction.—The scaling theory of localization [1]
made the remarkable prediction that arbitrary weak random
disorder localizes all eigenstates of a single electron in two
dimensions (2D), implying an absence of a metallic phase
for noninteracting electrons in 2D. The physics of locali-
zation also played a central role in Laughlin’s explanation
[2] of the origin of plateaus in the integer quantum Hall
effect (IQHE) [3], leading to extensive experimental and
theoretical investigation of Anderson localization of a
single electron in the presence of a magnetic field. The
observation of IQHE implies, unlike at zero magnetic
field, existence of extended single particle states in the
presence of a magnetic field. It has been argued that, in the
asymptotic limit, extended states occur at a single critical
energy Ec in each Landau level (LL). Experimental
measurements of the temperature dependence of the width
of the transition region from one plateau to the next suggest
a power law divergence of the localization length as
the critical energy is approached [4,5], although slightly
dissimilar exponents have been observed in different
experiments and for different transitions. Many theoretical
studies have attempted to determine the value of the critical
exponent characterizing the divergence of the localization
length [6–13]. We note that recent work has called the
notion of scaling into question and suggested that the
exponent observed in numerical calculations and experi-
ments is only an “effective” exponent which is not universal
but model dependent [14,15].
Interaction between particles significantly complicates

the problem. For example, interaction is thought to be
responsible for a metal-insulator transition in 2D electron
systems at zero magnetic field [16]. The objective of this

Letter is to address the localization physics in the fractional
quantum Hall effect (FQHE) regime, where both the
interaction and disorder cause highly nontrivial, nonper-
turbative phenomenology. From a microscopic perspective,
beginning with interacting electrons in a disordered poten-
tial is not practical or fruitful, and exact diagonalization
studies are inadequate because they are limited to very
small systems, whereas, as we see below, it is necessary to
go to rather large systems to capture the thermodynamic
behavior. Fortunately, the composite fermion (CF) theory
[17–19] opens a new avenue for tackling this problem.
According to the CF theory, the nonperturbative role of
interaction is to create composite fermions, and the problem
of strongly interacting electrons in the FQHE regime maps
into that of weakly interacting composite fermions in the
IQHE regime. This suggests the possibility that the
localization physics of the FQHE is analogous to that of
the IQHE [20,21], but a microscopic confirmation of such a
correspondence has been lacking. That question has moti-
vated the present Letter. The primary goal of our Letter is to
demonstrate that in the presence of a disorder potential, a
composite fermion in the nth CF-LL [called Λ level (ΛL)]
behaves, to a surprising degree, as an electron in the nth LL,
implying that the localization physics in the FQHE corre-
sponds to that in the IQHE in its universal as well as
nonuniversal aspects.
Model.—We begin by considering a single quasiparticle

(qp) or quasihole (qh) in the presence of a disorder potential
H ¼ P

α;k ϵkδðrα − wkÞ, which represents a random dis-
tribution of short-range impurities at random positions
fwkg with random on site energies ϵk. Here, the lengths
are measured in units of the magnetic length l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

,
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and the disorder strength ϵk in units of e2=l. We will
assume that disorder strength is weak compared to the
FQHE gap, in the sense that it neither creates qp’s or qh’s
out of the FQHE vacuum nor significantly distorts the
wave function of the already present qp’s or qh’s [see
Supplemental Material (SM) [22] for a quantitative dis-
cussion of how the state hybridizes with the neutral roton
excitation in the presence of the disorder [23–26] ]. The
objective then reduces to diagonalizing the above problem
in the basis fΨwj

g, where Ψwj
is the wave function of the

many particle state with a quasiparticle or quasihole
localized at wj. Remembering that the basis is not orthogo-
nal, the eigenfunctions Φ ¼ P

i ciΨwi
and the eigenener-

gies E satisfying HΦ ¼ EΦ are given by the solutions of
the matrix equation O−1Hc ¼ Ec, with Oij ¼ hΨwi

jΨwj
i,

Hij ¼ hΨwi
jHjΨwj

i, and c ¼ ðc1;…; cNÞT. The quantity
Hij is the tunneling amplitude for i ≠ j. Note that ϵj can be
positive or negative; we keep only the Ψwi

which are
localized at the “attractive” impurities in our basis,
although all impurities contribute to Hij. We will assume
that the number of impurities is smaller than the total
number of available orbitals, ensuring that the Ψwj

in our
basis are linearly independent. Hij and Oij are, in general,
complex due to the breaking of time reversal invariance by
the magnetic field, which is fundamentally responsible for
the strikingly different behavior in a magnetic field.
The quantities Hij and Oij can be evaluated (numeri-

cally) for the FQHE provided we know Ψwj
. One can

imagine resorting to exact diagonalization studies, but
those are restricted to systems that are too small to be
meaningful for the issue at hand, given that even a single
localized quasiparticle or quasihole has a rather large size.
Instead, we use the CF theory, which has clarified that,
microscopically, the quasiparticles are composite fermions
in an almost empty ΛL, and quasiholes are missing
composite fermions in an almost full ΛL [17,19,27–29].
To construct their wave function, we recall that the wave
function of a single electron localized at w ¼ wx þ iwy in
the nth LL at effective magnetic field B� is given by

ϕðnÞ
w ðz; B�Þ ¼

X
m

½ηðnÞm ðw;B�Þ��ηðnÞm ðz; B�Þ; ð1Þ

where the particle coordinate is defined as z ¼ xþ iy, and
m is the angular momentum index. The single particle
angular momentum orbitals in the nth LL in the symmetric
gauge are given by

ηðnÞm ðz;B�Þ¼ 1

l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

2π2mðmþnÞ!

s
zm

l�mL
m
n

� jzj2
2l�2

�
e−

jzj2
4l�2 ; ð2Þ

with the effective magnetic length l� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB�p

and
Lm
n ðtÞ is the associated Laguerre polynomial in Rodrigues

definition. The wave function Ψqp−n
w for the CF quasipar-

ticle of the ν ¼ n=ð2pnþ 1Þ state, located at w, is obtained

from the state with n filled LLs and one additional electron
localized at w in the (nþ 1)th LL by composite fermio-
nization. To give an explicit example, the wave function of
a quasiparticle of the ν ¼ 2=ð4pþ 1Þ state is given by

Ψqp−2
w ¼ PLLL

���������������������������

ϕð2Þ
w ðz1; B�Þ ϕð2Þ

w ðz2; B�Þ …

ηð1Þ−1ðz1; B�Þ ηð1Þ−1ðz2; B�Þ …

ηð1Þ0 ðz1; B�Þ ηð1Þ0 ðz2; B�Þ …

..

. ..
.

…

ηð1ÞN1−2ðz1; B�Þ ηð1ÞN1−2ðz2; B�Þ …

ηð0Þ0 ðz1; B�Þ ηð0Þ0 ðz2; B�Þ …

ηð0Þ1 ðz1; B�Þ ηð0Þ1 ðz2; B�Þ …

..

. ..
.

…

ηð0ÞN0−1ðz1; B�Þ ηð0ÞN0−1ðz2; B�Þ …

���������������������������
×

� YN
i<k¼1

ðzi − zkÞe−
P

j
jzjj2=4l21

�2p
: ð3Þ

Here, l1 is the magnetic length at ν ¼ 1, and N0 and N1 are
the number of composite fermions in the lowest two ΛLs
(we set n ¼ 0 for the lowest Λ level), and the total number
of particles is N ¼ N0 þ N1 þ 1. The symbol PLLL rep-
resents projection into the lowest LL (LLL), which we
evaluate using the standard Jain-Kamilla method [30,31].
The relation l�−2 þ 2pl−2

1 ¼ l−2 ensures that the product
wave function has the Gaussian factor corresponding to the
actual external magnetic field. The wave functions for
quasiparticles and quasiholes at other fractions can be
constructed analogously; see SM [22]. These wave func-
tions have been tested against exact wave functions and
found to be extremely accurate representations of the exact
Coulomb wave functions [19]. As a result, the conclusions
derived below from these wave functions can be considered
to be reliable.
The key question is whether the above FQHE problem is

equivalent, modulo a rescaling of parameters, to an IQHE
problem, for which Hij and Oij can be obtained analyti-
cally. Such a correspondence, should it exist, would be
powerful, because it would allow us to carry our knowledge
about the localization physics of the IQHE over to the
FQHE. We demonstrate below a close correspondence
between

Hðwj; ϵj; BÞ ⇔ Hðwj; ϵ�j ¼ ϵjB�=B;B�Þ: ð4Þ

Oðwj; ϵj; BÞ ⇔ Oðwj; ϵ�j ¼ ϵjB�=B; B�Þ: ð5Þ

We use H and O for the matrix elements in FQHE, and H
and O for the matrix elements of IQHE. We note that the
sample size and the impurity positions remain identical in
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the FQHE and the IQHE systems in laboratory units; if the
impurity positions are measured in units of the magnetic
length, then we must scale them by a factor ðl�=lÞ.
Results.—The natural basis set in our problem, consist-

ing of states with the quasiparticle localized at different
impurity positions, is not orthogonal. Apart from rela-
ting the matrix elements of the Hamiltonian, establish-
ing a correspondence between the single quasiparticle

localization problems in IQHE and FQHE also entails
relating the overlap matrix of the basis states.
With the wave functions in hand, first, we proceed

to evaluate the overlap matrix Oqp−n
ww0 ¼ hΨqp−n

w jΨqp−n
w0 i,

assuming 2p ¼ 2 below. The top two panels in Figs. 1
and 2 display the real and imaginary parts of the matrix
elementOqp−2

ww0 for the quasiparticle of ν ¼ 2=5 and ν ¼ 1=3
(stars). For comparison, we also show the IQHE counter-
part, Oqp−n

ww0 , namely, the overlap an electron localized at w
and that with that at w0 (solid lines). This can be analytically
evaluated to be (see SM [22])

Oqp−n
ww0 ¼

ffiffiffiffiffiffi
2π

p
ηðnÞ0 ðw − w0; B�ÞeιImðww̄0Þ

2l�2 : ð6Þ

The correspondence between the overlaps for CF quasi-
particle in the nth ΛL and for electron in the nth LL is
strikingly close (the discussion in the SM [22] provides
further insight into this result).
Next, we come to the comparison of matrix elements of

the Hamiltonian H ¼ P
α;k ϵkδðrα − wkÞ. The tunneling

matrix element Hqp−n
ij ¼ hΨqp−n

wi jHjΨqp−n
wj i is given by

Hqp−n
ij ¼ ϵiH

qp−n
wiwj;wi þϵjH

qp−n
wiwj;wj þ

P
k≠i;j ϵkH

qp−n
wiwj;wk , where

Hqp−n
wiwj;wk ≡ hΨwi

jPα δðrα − wkÞjΨwj
i. We consider, sepa-

rately, the two types of terms: Hqp−n
wiwj;wi , and Hqp−n

wiwj;wk with

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 1. This figure shows various matrix elements for the
quasiparticle of the ν ¼ 2=5 state (stars) and compares them with
the corresponding analytical results for an electron in the third
Landau level at an effective magnetic field (solid lines). (We
stress that the solid lines have no fitting parameters in this and
subsequent figures.) Panels (a) and (b) show the real and imagi-
nary parts of the overlap matrix elements hΨqp−2

ðw=2Þeiθ jΨ
qp−2
ðw=2Þi, for

θ ¼ π=6 (blue); θ ¼ π=3 (red); θ ¼ π=2 (orange); θ ¼ 2π=3
(brown); and θ ¼ π (magenta). Panels (c) and (d) show the real
and imaginary parts of the tunneling matrix elements
hΨqp−2

ðw=2Þeiθ j
P

i δ½ri − ðw=2Þeiθ�jΨqp−2
ðw=2Þi with the same color code.

(The solid lines are not fits.) Panels (e)–(h) show the phase and
the modulus of the impurity assisted tunneling matrix element
hΨqp−2

−ðw=2Þj
P

i δðri − xeiθ
0 ÞjΨqp−2

ðw=2Þi, for θ0 ¼ 0 (blue); θ0 ¼ π=4
(orange); and θ0 ¼ π=2 (red). Panels (e) and (f) correspond to
w ¼ 5, and panels (g) and (h) correspond to w ¼ 8. All lengths
are quoted in units of the magnetic length at ν ¼ 2=5. The
number of particles N in the Monte Carlo calculation is shown on
each panel; the results represent the thermodynamic limit. We
take N0 ¼ N1.

(a) (b)

(c) (d)

(e) (f)

(g)
(h)

FIG. 2. Same as in Fig. 1 but for the quasiparticle of ν ¼ 1=3.
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k ≠ i, j. In panels (c) and (d) of Figs. 1 and 2, we show
Hw1w2;w1

for the quasiparticle at ν ¼ 2=5 and ν ¼ 1=3.
Panels (e)–(h) show Hw1w2;w with w ≠ w1; w2. In the
numerical calculations, we have approximated the δ func-
tions as normalized Gaussian functions of a small width
0.1l. The corresponding tunneling matrix elements for the
quasiparticle of the IQHE state can be calculated ana-
lytically as shown in the SM [22]. The explicit formula
for Hqp−n

w1w2;w is

Hqp−n
wiwj;w ¼

νffiffiffiffiffiffi
2π

p ηðnÞ0 ðwi −wjÞei
2
Im½wjwi�

þ ηðnÞ0 ðw−wjÞei
2
Im½wjw�ηðnÞ0 ðwi−wÞei

2
Im½wwi�: ð7Þ

These are also shown in Figs. 1 and 2 (solid lines). Again a
close correspondence can be seen between the FQHE and
the IQHE results. Analogous results for the quasiholes at
ν ¼ 1=3 and 2=5 are given in the SM [22].
These studies provide a quantitative confirmation of the

“law of corresponding states” [20,21]. We should remem-
ber that our quasiparticle and quasihole wave functions
[Eq. (3) and SM [22] ] are extremely accurate approxima-
tions of the actual quasiparticles and quasiholes in the
FQHE, and thus, the calculated Oij and Hij are faithful
representations of the actual overlap and tunneling matrix
elements for the exact quasiparticles and quasiholes. In
other words, if an exact diagonalization study were possible
for large system sizes, it would have yielded very nearly the
same overlap and tunneling matrix elements. While the CF
theory provides a natural framework for understanding this
correspondence, there was not a priori reason why the
overlap and tunneling matrix element between the two
collective, many-particle states in the FQHE should have
such close correspondence with the overlap and tunneling
matrix element of a single electron. The correspondence is
particularly striking given that these quantities depend
sensitively on the filling factor as well as on the distance
across which a qp or qh tunnels. We expect that a slight
modification of the qp or qh wave function due to disorder
would produce a greater deviation between the calculated
and analytical matrix elements, but not change the primary
conclusions of our Letter.
Implications for experiments.—The above correspon-

dence between the overlap matrix elements implies that
the problem of Anderson localization of a quasiparticle of
the ν ¼ n=ð2pnþ 1Þ FQHE state is essentially identical to
that of the Anderson localization of an electron in the ν ¼ n
IQHE state, provided that the on site binding energies are
appropriately rescaled. Therefore, these two systems are
predicted to have identical critical properties. Thus, we can
export mutatis mutandis the results from the study of
noninteracting electrons in a magnetic field to make
predictions for the nature of localization in the FQHE.
We list these, along with the underlying assumptions.

For a single electron in a Landau level, it is believed that
the localization length diverges at some critical energy Ec.
Furthermore, the divergence of the localization length as Ec
is approached is described, at least approximately, by ξ ∼
jE − Ecj−α where α is the effective localization length
exponent. These features have found support from direct
numerical studies that solve the Schrödinger equation on a
disordered strip of finite width, and then use finite size
scaling to deduce the localization length in the thermody-
namic limit. The correspondence established above implies
that the localization length of a single CF quasiparticle also
diverges at a critical energy, with the same exponent as that
for electrons. Numerical calculations have shown that the
divergence of the localization length within the lowest
Landau level (relevant to 1 → 2 transition) is characterized
by an exponent α ≈ 2.3–2.5 [32,33]. In the second LL,
where the numerical calculations are less reliable, a higher
value α ≈ 5.5 is obtained for short range disorder [34–36],
and the exponent has been found to depend on the range of
the disorder. It has been argued [37] that, in higher LLs,
there is a large irrelevant length, and only for system sizes
and localization lengths larger than this irrelevant length,
not readily accessible to numerics, can a single parameter
scaling behavior be observed. It is generally believed that,
in the asymptotic, critical regime, the localization length
exponent is α ≈ 2.3–2.5 in all LLs. This is consistent with
calculations using a quantum percolation model that allows
tunneling across saddle points [8,38]. This value is also
consistent with that measured in the most reliable experi-
ments [5]. Translating these results to composite fermions,
we also predict α ≈ 2.3–2.5 for the FQHE. In addition, this
Letter may lead to generalizations of studies of the
disorder-induced quasiparticle lifetime or broadening in
the IQHE regime [39,40] to the FQHE.
So far, we have considered a single quasiparticle.

Increasing the electron filling factor amounts to creating
a finite density of CF quasiparticles in the topmost ΛL.
Now, the problem is more complex, because one must deal
with the interaction between composite fermions as well as
their fractional braiding statistics. It appears reasonable to
assume that composite fermions are weakly interacting.
This may be justified given that a large portion of the
Coulomb interaction has been spent into creating
composite fermions, which are themselves much more
weakly interacting than electrons; the interaction pseudo-
potentials for composite fermions are reduced by an order
of magnitude or more relative to the Coulomb pseudopo-
tentials for electrons [41,42]. Alternatively, one can note
that the charge associated with the CF quasiparticle or CF
quasihole has magnitude e=ð2pn� 1Þ, leading to an inter-
CF interaction that is reduced by a factor of ð2pn� 1Þ−2
relative to the Coulomb interaction between electrons.
The fractional braiding statistics can be incorporated by
mapping into an IQHE problem with the effective mag-
netic field given by B� ¼ B − 2πρðrÞ where the spatial
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dependence of the density ρðrÞ encodes information on
fractional braiding statistics. One must find eigenstates of
“noninteracting” composite fermions in the presence of
disorder, which must be done in a self-consistent manner as
the Hamiltonian depends on the density [43] (composite
fermions are not really noninteracting, as the solution for
any eigenstate depends on other eigenstates). The problem
is simplified if we make the mean field approximation of
replacing ρðrÞ by its average value and, thus, treat
composite fermions in a uniform B�. It appears to us,
although we cannot prove it, that this approximation is
likely to become valid for single-CF wave functions whose
extent is much larger than the separation between quasi-
particles; such wave functions with large localization
lengths are of primary interest in the vicinity of the phase
transition. (As shown in Refs. [44,45], a charged particle in
the presence of a lattice of fractional flux tubes behaves
similarly to a particle in a uniform magnetic field.) Then,
the problem maps into that of weakly interacting electrons
in a uniform effective magnetic field, and one can translate
the above results into a behavior as a function of the filling
factor, because increasing the filling factor simply fills
successively higher energy single particle CF orbitals. This
implies the power law behavior ξ ∼ jν − νcj−α. This pro-
vides insight into the result by Engel et al. [46], who find
the same exponent for the 1=3 → 2=5 transition as for the
IQHE transitions.
Within the mean field approximation, for symmetric

disorder, the extended state is predicted to occur at the
critical filling factor ν�c ¼ nþ 1=2, which determines
the position of the peak separating the incompressible
states at ν� ¼ n and ν� ¼ nþ 1 to be νc ¼ ðnþ 1=2Þ=
½2pðnþ 1=2Þ � 1�. There is experimental support for this
prediction [47]. We note that field theoretical treatments
have also suggested universality of the localization physics
in the FQHE and the IQHE [48–51].
In summary, we have shown that, in spite of the strongly

correlated nature of the FQHE, it is possible to make
detailed quantitative predictions regarding the nature of
localization, exploiting the observation that the analogy
between the FQHE and the IQHE also extends to the
localization physics.
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