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Chaotic quantum systems with Lyapunov exponent λL obey an upper bound λL ≤ 2πkBT=ℏ at
temperature T, implying a divergence of the bound in the classical limit ℏ → 0. Following this trend,
does a quantum system necessarily become “more chaotic” when quantum fluctuations are reduced?
Moreover, how do symmetry breaking and associated nontrivial dynamics influence the interplay of
quantum mechanics and chaos? We explore these questions by computing λLðℏ; TÞ in the quantum
spherical p-spin glass model, where ℏ can be continuously varied. We find that quantum fluctuations, in
general, make paramagnetic phase less and the replica symmetry-broken spin glass phase more chaotic. We
show that the approach to the classical limit could be nontrivial, with nonmonotonic dependence of λL on ℏ
close to the dynamical glass transition temperature Td. Our results in the classical limit (ℏ → 0) naturally
describe chaos in supercooled liquid in structural glasses. We find a maximum in λLðTÞ substantially above
Td, concomitant with the crossover from simple to slow glassy relaxation. We further show that λL ∼ Tα,
with the exponent α varying between 2 and 1 from quantum to classical limit, at low temperatures in the
spin glass phase.
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Understanding thermalization and transport rates inmany-
body systems andhowquantummechanics affects these rates
across various phases and phase transitions have important
implications for a remarkably wide range of topics. These
include information scrambling in black holes [1,2] and
quantum circuits [3], strange metals and Planckian dissipa-
tion [4,5], and complex dynamics in disordered systems
[6,7]. Recently a quantumLyapunov exponent or scrambling
rate λL [8] has emerged as one of the important diagnostics of
thermalization for several important systems [2,9–12] in
high-energy and condensed matter physics. Quantum
mechanics fundamentally influences this quantity by setting
an upper bound λL ≤ 2πkBT=ℏ [2] for a system at temper-
ature T.
However, typically the Lyapunov exponent can only be

extracted for quantum systems with a suitable semiclassical
limit [2,9–12]. An important class of models for such
systems corresponds to the solvable large-N Sachdev-Ye-
Kitaev (SYK) model [9,10,13] and its variants [14–18],
where λL can be calculated exactly in the large-N semi-
classical limit. Nevertheless, once this limit is taken, no
other quantum parameter like “ℏ” can be tuned in the SYK-
type models to explore how quantum mechanics actually
intervenes in the evolution of chaos between the classical
and quantum limits. Also these models typically do not
exhibit any symmetry breaking phase transitions and
associated nontrivial dynamics. To address these, we study
many-body chaos in one of the most studied solvable
models of glasses, namely, the spherical p-spin glass model

[19–28]. We show that the p-spin glass model gives us
highly tunable analytical access to the interplay between
chaos, quantum fluctuations, symmetry breaking, and
complex dynamics.
We compute the Lyapunov exponent in the quantum

p-spin glass model [22–27] of N spins interacting with
randomall-to-allp-spin interactions. Themodel sharesmany
common features with other models of quantum spin glass,
like transverse-field models [29–32]. Unlike the latter, the
quantum p-spin glass model is solvable both in the classical
and quantum limits for N → ∞. Moreover, the dynamics of
the model in the classical limit ℏ → 0 is of great importance
for structural glasses [6] and is identical to themode coupling
theory (MCT) dynamics in supercooled liquids [33–35]. As
shown in Fig. 1, the model has thermodynamic transition,
TcðℏÞ, between paramagnetic (PM) and replica-symmetry
broken (RSB) spin glass (SG) phase forp ≥ 3 [26,27]. There
is a dynamical transition at Td > Tc from slow glassy
thermalization to lackof ergodicity belowTd and a relaxation
time τα, extracted from spin-spin correlation function,
diverges for T → Tþ

d .
We obtain λLðℏ; TÞ from the out-of-time-ordered corre-

lator (OTOC) [2,8] for the quantum spin glass by varying ℏ
over the entire phase diagram (Fig. 1), with the following
main results. (1) We show that quantum fluctuations, in
general, reduce chaos in the disordered phase (PM) and
increase chaos in the ordered (SG) phase. However, we find
that λL, over certain temperature range close to TdðℏÞ in the
PM phase, is a nonmonotonic function of ℏ. This indicates
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nontrivial nature of quantum corrections to λL. (2) By
taking ℏ → 0 limit for T > Td, we obtain the temperature
dependence of the Lyapunov exponent of a supercooled
liquid. (3) We show that, unlike τα, λ−1L has a broad
minimum at T ¼ Tm > Td (Fig. 1), correlated with the
crossover to the two-step glassy relaxation [33–35]. We
analytically show that Tm signifies a crossover in chaos,
arising due to an interplay of relaxation, the rapid increase
of relaxation time in the glassy regime, and the crossover
from strong coupling (≳T) to weak coupling (≲T). This
result is more general than the model considered here and
should have implications for complex relaxations in liquids
and many other interacting systems. (4) For λL in the SG
phase, we obtain the OTOC in a replica-symmetry broken
marginal SG (mSG) phase [26,27]. We find λL ∼ Tα at low
temperature in the mSG phase, with the exponent α varying
between ∼2 − 1 from quantum to the classical limit.
Earlier works [36,37] have studied chaos in the PM

phase of a quantum rotor glass model [38] with two-rotor
interaction. The model has the same thermodynamic phase
diagram as the p ¼ 2 spin glass model and the SG phase is
replica symmetric [39]. A similar SG phase is also realized
in a version of the SYK model represented in terms of SO
(N) spins, where the Lyapunov exponent has been com-
puted via numerical simulation in the classical large spin
limit [40]. In this Letter we provide the first calculation of
quantum OTOC and the associated Lyapunov exponent via
Schwinger-Keldysh methods, from the quantum to classical
limit, in the p ¼ 3 spin glass model. The model exhibits a
nontrivial replica symmetry broken SG phase and a
complex glassy relaxation regime unlike the models con-
sidered in the previous studies [36,37,40].

Model.—We study the quantum spherical p-spin glass
model [24–27], described by the Hamiltonian,

H ¼
X
i

π2i
2M

þ
X

p;i1<…<ip

JðpÞi1…ip
si1…sip ; ð1Þ

with random all-to-all interactions among p ¼ 2; 3;…

spins on i ¼ 1;…; N sites; the couplings JðpÞi1…ip
s drawn

from Gaussian distribution with variance J2pp!=2Np−1. The
quantum dynamics results from the commutation relation
½si; πj� ¼ iℏδij. The model is nontrivial due to the spherical
constraint

P
i s

2
i ¼ N. The Hamiltonian describes a particle

with mass M moving on the surface of an N-dimensional
hypersphere. We study chaos in the model with p ¼ 3
(J3 ¼ J). For p ¼ 2, the model is noninteracting [39] and
nonchaotic, i.e., λL ¼ 0.
Large-N saddle points and phase diagram.—The equi-

librium and dynamical phase diagrams of the model
[Eq. (1)] have been analyzed in detail [22–27,41]. In the
N → ∞ limit, the phases are characterized by disorder
averaged time-ordered (T τ) correlation function,
QabðτÞ ¼ ð1=NÞPihT τsiaðτÞsibð0Þi, obtained from the
saddle point equations of the imaginary time (τ) path
integral (see Supplemental Material, Sec. S1 [42]),

Q−1
abðωkÞ ¼

�
ω2
k

Γ
þ z

�
δab − ΣabðωkÞ ð2aÞ

ΣabðτÞ ¼
X
p

pJ̃2p
2

½QabðτÞ�p−1: ð2bÞ

The replicas a ¼ 1;…; n are introduced to perform the
disorder averaging and ωk ¼ 2kπT is bosonic Matsubara
frequency with k an integer (kB ¼ 1); J̃p ¼ Jp=J, and
temperature, time, and frequency are in units of J, ℏ=J, and
J=ℏ, respectively. QabðωkÞ ¼

R β
0 dτeiωkτQabðτÞ (β ¼ 1=T)

is matrix in replica space and the spherical constraint,
ð1=NÞPi s

2
ia ¼ Qaaðτ ¼ 0Þ ¼ 1, is imposed via the

Lagrange multiplier z. The quantum fluctuations is tuned
through the dimensionless parameter Γ ¼ ℏ2=MJ by
changing ℏ with fixed M [43].
As in the earlier works [26,27], we obtain the phase

diagram (Fig. 1) by numerically solving the saddle-point
equations [Eqs. (2)] (see Supplemental Material, Secs. S1
1, S1 3 [42]). The replica structure of QabðτÞ for n → 0
characterizes PM and SG phases, namely, (a) in the PM
phase, QabðτÞ ¼ QðτÞδab is replica symmetric, and (b) for
the SG phase, the order parameter has an exact one-step
replica symmetry breaking (1-RSB) structure where n
replicas are broken into diagonal blocks with m replicas
and QabðτÞ ¼ ½qdðτÞ − qEA�δab þ qEAϵab; ϵab ¼ 1 if a, b
are in diagonal block else ϵab ¼ 0. The Edward-Anderson

0 0.3 0.6 1 1.5 1.9

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

λL(J )

Td

Tc Tm
Tβ

qPM

mSG

cPM

FIG. 1. Lyapunov exponent λLðℏ; TÞ (color map, in units of J)
on the thermodynamic phase diagram. The thermodynamic PM-
SG phase transition TcðℏÞ line (thin red solid line) is second order
up to a tricritical point (black star) and then first order (thin
dashed red line). The mSG to PM transition is demarcated by the
dynamical transition line TdðℏÞ > TcðℏÞ (thick solid red line).
The locus of the broad maximum of λLðT;ℏÞ is shown as TmðℏÞ
line (solid black line) and compared with the crossover temper-
ature TβðℏÞ to the two-step glassy relaxation regime (blue line).
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(EA) order parameter qEA is finite in the SG phase and
vanishes in the PM phase.
As shown in Fig. 1, the PM to SG phase transition TcðℏÞ

is second order up to a tricritical point and then first order
till T ¼ 0 [26,27]. There are two PM phases, a classical PM
(cPM), adiabatically connected to PM at ℏ ¼ 0, and a
quantum PM (qPM) phase for T ≲ T� and above the first-
order line. We compute λL in the cPM region since the qPM
is strongly gapped [27], and hence very weakly chaotic. For
the SG phase, we only consider the so-called marginal spin
glass phase [27], where the block size or the break point m
is obtained by the marginal stability criterion [27] (see
Supplemental Material, Sec. S1 2 [42]). The mSG phase is
demarcated by the dynamical phase transition line TdðℏÞ >
TcðℏÞ (Fig. 1).
For computing the Lyapunov exponent λL, we also need

dynamical correlation and response functions in real time
(frequency) t (ω). These are obtained using the spectral
function ρðωÞ ¼ −ImQR

aaðωÞ=π, where the retarded
propagator, QR

abðωÞ ¼ Qabðiωk → ωþ i0þÞ ¼ QRðωÞδab
(Supplemental Material, Sec. S1 1 [42]).
OTOC and the Lyapunov exponent.—As in the SYK

model [9,44], the OTOC, FðtÞ ∼ hsiðtÞsjð0ÞsiðtÞsjð0Þi can
be computed via real-time path integral method using a
Schwinger-Keldysh (SK) contour with four branches, as
shown in Fig. 2 [9,15,44]. However, in contrast to the
SYK model, where the large-N saddle point is always
replica symmetric [44], here we need to incorporate the
nontrivial 1-RSB structure in the OTOC. We achieve
this by using a replicated SK path integral [45,46]
(Supplemental Material, Sec. S2 [42]). We define the
following regularized disorder-averaged OTOC [2,44,47],
Faðt1; t2Þ¼ ð1=N2ÞPijTr½ysiaðt1Þysjað0Þysiaðt2Þysjað0Þ�,
where y4 ¼ exp ð−βHÞ=Tr½exp ð−βHÞ�. The Lyapunov
exponent λL is extracted from the chaotic growth,
F aðt; tÞ ∼ eλLt, that appears at Oð1=NÞ in Fðt1; t2Þ
(Supplemental Material, Sec. S2 1 [42]). Over the
intermediate-time chaos regime, λ−1L ≲ t≲ λ−1L lnðNÞ,

F aðt1; t2Þ can be obtained from a Bethe-Salpeter-like
equation [9,15,44],

F aðt1; t2Þ ¼
Z

dt3dt4Kaðt1; t2; t3; t4ÞF aðt3; t4Þ: ð3Þ

The ladder kernel K, e.g., for p ¼ 3, Kaðt1; t2; t3; t4Þ ¼
3J2QR

aaðt13ÞQR
aaðt24ÞQW

aaðt34Þ (t13 ¼ t1 − t3) (see
Supplemental Material, Sec. S2 1 [42]), is obtained
using the retarded, QR

aaðtÞ, and the Wightmann,
QW

aaðtÞ ¼ Qaaðτ → itþ β=2Þ, correlators [47]. For the
chaotic growth regime, using the ansatz Faðt1; t2Þ ¼
eλLðt1þt2Þ=2faðt1 − t2Þ [9,15,44], λL is obtained by numeri-
cally diagonalizing the kernel K (Supplemental Material,
Sec. S2 2 [42]).
The information about the PM and SG phases are

encoded in the ladder kernel and a crucial difference is
in the Wightmann correlator, namely, for the SG phase
QW

aaðωÞ ¼ f2πδðωÞqEA − ½πρðωÞ= sinhðβω=2Þ�g, whereas
the first term is absent for QW in the PM phase, where
qEA ¼ 0.
Chaos in the paramagnetic phase.—We first discuss the

dependence of λL on T and ℏ in the cPM phase, as shown
through the color map in Fig. 1 for p ¼ 3. Overall, λL
becomes small when T or ℏ are large. λL exhibits a broad
maximum at TmðℏÞ, substantially above Td, albeit tracking
TdðℏÞ line and merging with it at the tricritical point. λL is
plotted in Fig. 3(a) as function of ℏ for several temperatures.
For high and intermediate temperatures (T ≳ J), λL is a

(a) (b)

FIG. 2. (a) The four real-time branches (separated by imaginary
time β=4) of the Schwinger-Keldysh contour used for computing
the OTOC. (b) The ladder diagram for Eq. (3) for the Oð1=NÞ
term (F a) in the OTOC Faðt1; t2Þ is shown for p ¼ 3. The solid
horizontal lines denote the dressed retarded propagator
QR

aaðt1; t3Þ, QR
aaðt2; t4Þ and the vertical rung denotes the Wight-

mann function QW
aaðt3; t4Þ. The dotted line represents disorder

averaging.
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FIG. 3. (a) Lyapunov exponent λL (in units of J) as a function of
ℏ for several values of T in the cPM phase. (b) λL (in units of J) as
a function of ℏ for several values of T in the mSG phase. (c) λLðTÞ
(in units of J) across mSG-PM transitions [TdðℏÞ, vertical dashed
lines] for ℏ ¼ 0.03, 1.0. (d) λL vs T (log-log scale) at low
temperature for ℏ ¼ 0.03, 1.41 fitted with a power-law λL ∝ Tα.
(e) The exponent α varies from 1–2 as ℏ varies from the classical
limit to the quantum limit.
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monotonically decreasing function of ℏ, approaching a
constant value in the classical limit ℏ → 0. λL decreases
rapidly for ℏ≳ 1 since the system acquires a large spectral
gap ∼Γ for strong quantum fluctuations Γ ≫ T, J [27]
(Supplemental Material, Sec. S4 2 [42]), making the inter-
action effects, and thus the chaos, very weak (λL ∼ e−Γ=T).
Remarkably, when temperature is close to Tdð0Þ, λL is a

nonmonotonic function of ℏ. This implies that the approach
to classical limit could be nontrivial for chaotic properties.
A nonmonotonic dependence is also seen with T
[Fig. 3(c)]. Starting from T ≳ TdðℏÞ, λL initially increases
reaching the maximum at Tm and then decreases with
increasing T, as ∼1=T2 at high temperature T ≫ J
(Supplemental Material, Sec. S4 1 [42]). In this limit,
the system has a small gap ∼

ffiffiffiffiffiffi
ΓT

p
< T for T > Γ, whereas

in the intermediate regimes T;Γ≳ Tm, the system is soft
gapped and becomes gapless in the classical limit Γ → 0
(Supplemental Material, Sec. S3 [42]).
Chaos in the spin glass phase.—In contrast to the PM

phases, the mSG phase is gapless [26,27]. Moreover, unlike
that in the cPM phase [Fig. 3(a)], λLðℏÞ, in general,
monotonically increases with ℏ, as shown in Fig. 3(b), apart
from some weak nonmonotonic dependence on ℏ at low
temperatures. Thus, quantum fluctuations makes the system
more chaotic in the mSG phase. Figure 3(c) shows λLðTÞ for
two ℏ values. The Lyapunov exponent follows a power-law
temperature dependence, λL ∼ Tα, with exponent α varying
from 2 to 1 [Figs. 3(d) and 3(e)] with decreasing ℏ, implying
λL ∼ T in the classical limit. However, the prefactor of linear
T ismuch smaller than 2π=ℏ corresponding to the bound (see
Supplemental Material, Sec. S4 3 [42]).
The temperature dependence λL ∼ T2, for large ℏ [Fig. 1]

within the mSG phase, is similar to that in a Fermi liquid
[15,48,49]. This T dependence in the mSG phase can be
understood based on the observation that the self-consistent
equations for the time-dependent part of QabðτÞ [Eq. (2)],
and the kernel [Eq. (3)], in the presence of 1-RSB are
equivalent to those in the PM phase of an effective model
with both p ¼ 3 (J3 ¼ J) and p ¼ 2 (J2 ¼ J

ffiffiffiffiffiffiffiffiffiffi
3qEA

p
) terms

in Eq. (1) (Supplemental Material, Sec. S2 1 [42]).
Irrespective of the J3=J2 ratio, p ¼ 3 term is irrelevant
at low energy and can be treated perturbatively, with a
Lagrange multiplier z ¼ 2J2 such that the system is gapless
like in the mSG. In this case, as discussed in the
Supplemental Material, Sec. S4 4 [42], the integral kernel
equation in Eq. (3) can be converted into

�
−
1

2

∂2

∂t2 − sech2t

�
fðtÞ ¼ −

1

3

�
λL

J32
πJ23T

2
þ 1

�
fðtÞ;

i.e., a one-dimensional Schrödinger equation with Pöschl-
Teller potential, with well-known eigenvalues [50]. This
leads to λL ∼ T2=q3=2EA . The exponent α ≃ 2 matches with
numerically obtained value in Fig. 3(e) in the quantum limit
for large ℏ, where J2 ∝

ffiffiffiffiffiffiffiffi
qEA

p
is weakly temperature

dependent (Supplemental Material, Sec. S4 4 [42]). Since
quantum fluctuations reduce the SG order parameter qEA
(SupplementalMaterial, Sec. S44 [42]), λL ∼ q−3=2EA naturally
explains the enhancement of chaos [Fig. 3(b)] due to ℏ.
Scrambling from glassy relaxation.—As shown in

Fig. 4(a), the decay of spin-spin correlation CðtÞ ¼
ð1=NÞPihsiðtÞsið0Þ, becomes slower as T → TdðℏÞþ.
Moreover, close to Td, CðtÞ exhibits a two-step relaxation,
typical characteristic of supercooled liquids [33–35], namely,
(i) a fast microscopic decay followed by a slowly decaying
plateaulike β-relaxation regime, and eventually (ii) the α
regimewith a stretched exponential decay∼ exp ½−ðt=ταÞβa �,
with a diverging timescale τα ∼ ðT − TdÞ−γ (γ > 0) and
stretching exponent βa [33–35]. The emergence of the
two-step relaxation close to Td is seen in Fig. 4(a)
(Supplemental Material, Sec. S5 [42]). In Fig. 4(b), we plot
τα extracted from the numerical fit toCðtÞ [Fig. 4(a)] in the α
regime and compare with λ−1L . In contrast to τα, λ−1L has a
minimum at Tm, substantially above Td. In Supplemental
Material, Sec. S6 1 [42], we show that the stretched
exponential part from α relaxation of CðtÞ [Fig. 4(a)] alone
with the τα shown in Fig. 4(b) give rise to the nonmonotonic
λLðTÞ [Fig. 3(c)]. We analytically solve the kernel equation
[Eq. (3)] and obtain λLðTÞ in the PM phase for Debye
relaxation ∼ expð−t=ταÞ (Supplemental Material, Sec. S6 2
[42]). We show that

λL ∼ τ−1α ð2J=T − 1Þ;

for T ≲ J, leading to a maximum at Tm ∼
ffiffiffiffiffiffiffiffi
JTd

p
for γ ¼ 1.

Thus, for temperature close to Td, λL ∝ τ−1α , i.e., the scram-
bling rate is controlled by relaxation rate. However, the
crossover from strong (J > T) to weak (J < T) coupling in
combination with the nontrivial temperature dependence of
τα in the glassy regime, give rise to a crossover in chaos in the
form of a maximum in the Lyapunov exponent. As shown in
Fig. 1, we find thatTm is correlatedwith the crossover (Tβ) to
two-step glassy relaxation [Fig. 4(b)]. The onset of nontrivial
temperature dependence of τα is presumably connected with
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FIG. 4. (a) The correlation function CðtÞ for several values of
temperature T in the classical limit (ℏ ¼ ffiffiffiffiffiffiffiffiffiffiffi

0.001
p

). (b) The α-
relaxation timescale τα, diverging for T → Td (vertical black
dashed line), extracted from CðtÞ and λ−1L as function of T in the
classical limit ℏ ¼ ffiffiffiffiffiffiffiffiffiffiffi

0.001
p

. The crossover temperature Tβ to two-
step β relaxation is shown by the vertical red-dashed line.
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the onset of the two-step relaxation, leading to the correlation
between Tm and Tβ. However, to properly establish this
relation, we need an analytical understanding ofCðtÞ andTβ,
which is beyond the scope of this Letter.
Conclusions.—In this work, we have shown how quan-

tum mechanics influences chaos in a solvable quantum spin
glass model. We derive relation between chaos and relax-
ation rates in the complex glassy regime above the glass
transition. So far, such direct relation between scrambling
and relaxation has only been established for weakly
interacting systems [11,12,15,47]. In future, studying the
connection between many-body chaos and relaxation in
simulation [51] of supercooled liquids [6] may lead to new
insight into complex dynamics in glasses. It would be
interesting to study the quantum to classical crossover in
other models [40], where λL already starts at the upper
bound 2πT=ℏ in the quantum limit. Also, the methods
developed here to analyze chaos can be extended to
transverse-field models [29–32], e.g., with Ising spins.
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Note added.—Recently, Ref. [52], which looks into a
quantum p-spin glass model and its chaotic properties
from the holographic perspective, appeared on arXiv.
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