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The recently developed exact factorization approach condenses all electronic effects on the nuclear
subsystem into scalar and vector potentials that appear in an effective time dependent Schrödinger
equation. Starting from this equation, we derive subsystem Ehrenfest identities characterizing the energy,
momentum, and angular momentum transfer between electrons and nuclei. An effective electromagnetic
force operator induced by the electromagnetic field corresponding to the effective scalar and vector
potentials appears in all three identities. The effective magnetic field has two components that can be
identified with the Berry curvature calculated with (a) different Cartesian coordinates of the same nucleus
and (b) arbitrary Cartesian coordinates of two different nuclei. (a) has a classical interpretation as the
induced magnetic field felt by the nucleus, while (b) has no classical analog. Subsystem Ehrenfest identities
are ideally suited for quantifying energy transfer in electron-phonon systems. With two explicit examples
we demonstrate the usefulness of the new identities.
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The immensity of information in the quantum mechani-
cal wave function is an obstacle to finding a clear physical
picture of microscale dynamical processes. It is thus crucial
to single out a few variables that condense the most relevant
information, and experience shows this is particularly
successful when these variables have classical analogs.
This line of thinking dates back to Ehrenfest. For a single
particle described by a time dependent Schrödinger equa-
tion (TDSE), the Ehrenfest theorem bridges the quantum
and classical pictures by providing equations of motion for
the expectation values of position and momentum that have
a strong resemblance to Newton’s equations [1].
Yet, real world systems are made up of multiple particle

species. In this respect, the Ehrenfest theorem are limited
because they do not probe the multicomponent nature of the
system. It would therefore be desirable to go beyond the
Ehrenfest theorem in the following twoways: (i) identifying
useful variables that are specific to a subsystem, and
(ii) deriving their equations of motion in a form which
brings to light the classical analogs they contain.
For molecules and solids, three obvious candidates for

(i) are the kinetic energy, momentum, and angular
momentum of the nuclei. These variables are helpful in

gaining insight into dynamical phenomena where energy
and momentum are transferred between electrons and
nuclei. For example, energy transfer is crucial for under-
standing the fast internal conversion of DNA and RNA
[2,3] and electronic friction-induced relaxation of molecu-
lar vibrations [4–6]. By tuning the energy transfer rate,
one can control current-induced forces [7–9] in nano-
systems and minimize Joule heating [10,11]. By under-
standing angular momentum transfer on the microscale,
one may find inspiration in designing molecular motors
and refrigerators [12–15] and in studies of quantum
thermodynamics [16–18].
Energy transfer in electron-phonon systems is the subject

of intense and sustained research [19]. Time-resolved
pump-probe spectroscopy is capable of tracking the non-
equilibrium dynamics of electrons after excitation by a laser
pulse. Predicting the subsequent phonon-induced electron
relaxation is a challenge for existing theoretical approaches,
and most work uses phenomenological models.
In this Letter, we derive Ehrenfest identities that can

rigorously quantify the energy transfer between electrons
and phonons. Our results, in fact, apply to any two-
component system, though for concreteness we consider
here a system of electrons and nuclei. Unlike conventional
methods where quantum subsystems are described by a
reduced density matrix [20,21] or nonequilibrium Green’s
function [22], the essence of our approach lies in the
realization that a subsystem can be treated as a pure state
whose dynamics are described by an effective Schrödinger
equation.
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The exact factorization (EF) method [23–25] sets down
the rigorous definition of a nuclear wave function that
yields the exact nuclear probability density and current
density [26]. We will show in this Letter that it also yields
the exact nuclear angular momentum. The fact that the
nuclear wave function obeys a TDSE in which all electronic
effects have been condensed into scalar and vector poten-
tials [24,25] is the key to point (ii) above, for it is precisely
this structure that allows us to identify quantities with
classical analogs in the subsystem Ehrenfest identities
(SEIs) for the kinetic energy, momentum, and angular
momentum.
Let us start with the full TDSE for electrons and nuclei,

i∂tΨðr;R; tÞ ¼ ĤΨðr;R; tÞ; ð1Þ

where r ¼ ðr1; r2;…; rNe
Þ and R ¼ ðR1;R2;…;RNn

Þ
denote the electronic and nuclear coordinates, respectively.
Ĥ is the full Hamiltonian which in the absence of external
potentials comprises the nuclear kinetic energy T̂n, the
electronic kinetic energy T̂e, electron-electron interaction
V̂ee, electron-nucleus interaction V̂en, and nucleus-nucleus
interaction V̂nn. The nuclear kinetic energy Tn, momentum
Pn, and angular momentum Ln are defined as the expect-
ation values of the corresponding operators,

Tn ¼ hΨj
XNn

μ¼1

−
1

2Mμ
∇2

Rμ
jΨirR; ð2Þ

Pn ¼ hΨj
XNn

μ¼1

−i∇Rμ
jΨirR; ð3Þ

Ln ¼ hΨj
XNn

μ¼1

Rμ × ð−i∇Rμ
ÞjΨirR: ð4Þ

Here, μ indexes the nuclei, Mμ are the nuclear masses, and
the subscripts of the bra-kets indicate which variables are
integrated over in the inner product. As a nonstationary Ψ
evolves, these expectation values change in time due to the
coupling to the electronic subsystem.
It has been shown that Ψðr;R; tÞ can be factorized into a

marginal nuclear wave function χðR; tÞ and a conditional
electronic wave function ΦRðr; tÞ [23–26]. Furthermore,

ΦR satisfies a complicated electronic equation while χ

satisfies a simple nuclear TDSE [25,26], i∂tχ ¼ Ĥnχ,
where Ĥn ¼

PNn
μ¼1ð1=2MμÞð−i∇Rμ

þAμÞ2 þ ϵ. Here,
ϵðR; tÞ is the scalar potential originating from the electronic
equation, and AμðR; tÞ ¼ hΦRj − i∇Rμ

jΦRir are nucleus-

dependent vector potentials. By virtue of the fact that χ
obeys a TDSE and can be viewed as the wave function of a

closed system acted on by ϵ and Aμ, we can evaluate Tn,
Pn, and Ln equally well as

Tn ¼ hχj
XNn

μ¼1

1

2Mμ
ð−i∇Rμ

þAμÞ2jχiR þ Tn;geo; ð5Þ

Pn ¼ hχj
XNn

μ¼1

ð−i∇Rμ
þAμÞjχiR; ð6Þ

Ln ¼ hχj
XNn

μ¼1

Rμ × ð−i∇Rμ
þAμÞjχiR: ð7Þ

Here,

Tn;geo ¼ hχj
XNn

μ¼1

1

2Mμ
ðh∇Rμ

ΦRj∇Rμ
ΦRir −A2

μÞjχiR ð8Þ

is an additional geometric term, which can be written as the
tensor contraction of an inverse inertia tensor and a
Riemannian metric measuring distance in the space of
quantum states (see Ref. [27] and references therein.)
Comparing Eqs. (5)–(7) with Eqs. (2)–(4), one can easily
recognize their formal resemblance. The equivalence of
Eq. (6) and Eq. (3) implies that the Ehrenfest equation for
the momentum of the nuclei can be evaluated by consid-
ering either the full system or the nuclear subsystem alone,
as shown in Ref. [28]. In replacing the full wave functionΨ
by the marginal subsystem wave function χ and the
corresponding integration domain, we obtain additional
terms with vector potentials Aμ arising in conjunction with
the canonical momentum operators. A similar argument
applies to the nuclear angular momentum. In contrast,
Eq. (5) and Eq. (2) imply that the true nuclear kinetic
energy Tn differs from the kinetic energy of the effective
closed system described by the nuclear subsystem (mar-
ginal) TDSE, denoted as Tn;marg, by the quantity in Eq. (8)
as shown in Ref. [29]. In the following, we derive the
equations of motion for Tn;marg, Pn, and Ln, and will show
that they all satisfy classical-like equations, governed by a
unified force operator.
We start by applying the Heisenberg equation of motion

for Tn;marg ¼ hχjt̂njχi with t̂n ¼
PNn

μ¼1ð1=2MμÞð−i∇Rμ
þ

AμÞ2 to the nuclear TDSE, which leads to

dTn;marg

dt
¼ ihχj½Ĥn; t̂n�jχiR þ hχj∂ t̂n∂t jχiR

¼
XNn

μ¼1

1

Mμ
fhχjð∂tAμ −∇Rμ

ϵÞ · ð−i∇Rμ
þAμÞjχiR

− i
1

2
hχjð∇Rμ

· ð∂tAμ −∇Rμ
ϵÞÞjχiRg: ð9Þ
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Here, the left hand side of Eq. (9) is real. When we take the
real part of Eq. (9), the left hand side stays the same while
the second term in the braces of the right hand side vanishes
since it is purely imaginary. Then, by introducing a velocity
operator v̂μ ≡ ð1=MμÞð−i∇Rμ

þAμÞ for each nucleus and
defining the effective electric field Eμ ¼ ∂tAμ −∇Rμ

ϵ, we
condense Eq. (9) into the following compact form,

dTn;marg

dt
¼ Rehχj

XNn

μ¼1

Eμ · v̂μjχiR: ð10Þ

This equation is valid when there are no external forces
driving the system. In the presence of external potentials
acting on the electrons, those potentials will enter the
electronic equation of motion leading to a modified
electronic conditional wave function ΦRðr; tÞ and hence

to modified functionsAμðR; tÞ and ϵðR; tÞ, but the form of
Eq. (10) remains unchanged. On the other hand, external
potentials acting on the nuclei will enter Eq. (10)
directly through the replacements AμðR; tÞ → AμðR; tÞ þ
Aext;μðR; tÞ and ϵðR; tÞ → ϵðR; tÞ þ vextðR; tÞ.
Equation (10) casts the rate of change, dTn;marg=dt, in the

form of the classical work done per unit time by an electric
field on a charged particle. We can obtain the rate of change
of the full nuclear kinetic energy, dTn=dt, by adding
dTn;geo=dt to dTn;marg=dt. A separate identity has been
derived for dTn;geo=dt [30], but it cannot be expressed in a
force-times-velocity form like Eq. (10).
In the absence of external forces, the total energy of the

complete electron-nuclear system is conserved and can be
written as the sum of three gauge-invariant terms: Etot ¼
hΨðtÞjĤjΨðtÞirR ¼ Tn;margðtÞ þ Tn;geoðtÞ þ EBOðtÞ, where
EBOðtÞ ¼ hΨðtÞjT̂e þ V̂ee þ V̂en þ V̂nnjΨðtÞirR is the

Born-Oppenheimer (BO) energy contribution . As we will
demonstrate in the later sections of this Letter, nonadiabatic
dynamical processes can be efficiently analyzed in terms of
the energy transfer between these three gauge-invariant
quantities (even when external forces are present). It will
turn out thatTn;geo is sizable,when a nonadiabatic population
transfer between BO surfaces occurs. On the other
hand, in the extreme adiabatic limit, when the
factorization of the total wave function reduces to
Ψðr;R; tÞ ¼ χðR; tÞΦBOðrjRÞ, i.e., to a vibrational wave
packet χðR; tÞ oscillating in a single BO surface, then Tn;geo

tends to be small, and one mainly observes the periodic
energy transfer between Tn;margðtÞ and EBOðtÞ, i.e., the
transfer between kinetic and potential energy of the oscillat-
ing wave packet. The expectation value hχðtÞjĤnjχðtÞiR of

the nuclear subsystem Hamiltonian is not gauge invariant.
However, interestingly, in the particular gauge defined by
hΦRðr; tÞji∂tjΦRðr; tÞir ¼ 0 (which is the natural gauge

when the electronic factor is identical with a static BO state),
hχðtÞjĤnjχðtÞiR becomes identical withEtot, suggesting that

the periodic exchange between kinetic and potential energy
of the marginal subsystem can be interpreted as periodic
energy transfer between electrons and nuclei.
Next, we derive the SEI for the nuclear momentum.

Here, instead of summing up the momenta of all nuclei,
let us consider each individual Pμ ¼ hχjp̂μjχiR, where

p̂μ ¼ −i∇Rμ
þAμ. Once again, we use the Heisenberg

equation of motion to arrive at

dPμ

dt
¼ ihχj½Ĥn; p̂μ�jχiR þ hχj∂tp̂μjχiR
¼ hχjEμjχiR þ ihχj½t̂n; p̂μ�jχiR: ð11Þ

Let us denote Qμ ¼ ihχj½t̂n; p̂μ�jχiR. The fact that dPμ=dt

and hχjEμjχiR are both real implies Qμ is real. By some

algebra, we derive theG (G ¼ X, Y, Z) component ofQμ as
given by

QG
μ ¼ Rehχj

X
νG0

ð∂G0
ν
AGμ

− ∂Gμ
AG0

ν
Þv̂G0

ν
jχiR

¼ Rehχj
X
νG0

CG
0G

νμ v̂G0
ν
jχiR: ð12Þ

Here, CG
0G

νμ ≡ ∂G0
ν
AGμ

− ∂Gμ
AG0

ν
is the Berry curvature.

By grouping QG
μ into intranuclear and internuclear

contributions,

QG
μ ¼ Rehχj

X
G0

�
CG

0G
μμ v̂G0

μ
þ
X
ν≠μ

CG
0G

νμ v̂G0
ν

�
jχiR; ð13Þ

we can identify some classical analogs. In particular, the
intranuclear curvature CG

0G
μμ behaves like a classical mag-

netic field Bμ, where CXYμμ ¼ BZ
μ , CYZμμ ¼ BX

μ , and CZXμμ ¼ BY
μ .

Upon summing over G0, these intranuclear terms lead to the
following simple expression:

X
G0

CG0G
μμ v̂G0

μ
¼ ðBμ × v̂μÞG: ð14Þ

The classical counterpart of Eq. (14) is the magnetic force
acting on nucleus μ, which combined with Eμ in Eq. (11)
leads to the generalized Lorentz force operator

F̂μ ¼ Eμ þ Bμ × v̂μ: ð15Þ

In contrast to the classical picture, here this force is an
operator and the electromagnetic field is nucleus specific.
Moreover, the appearance of the magnetic force as Bμ × v̂μ
rather than −Bμ × v̂μ occurs because the sign in our
definition of Aμ is the opposite of that in the conventional
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definition [31], which flips the sign of Aμ in the definition
of p̂μ.
On the other hand, the summation over the internuclear

curvature terms has no classical analog and does not readily
simplify. Instead, we introduce an internuclear magnetic
force operator

D̂G
μ ¼

X
ν≠μ;G0

CG
0G

νμ v̂G0
ν
¼

X
ν≠μ

ð∇Rν
AGμ

− ∂Gμ
AνÞ · v̂ν: ð16Þ

The internuclear Berry curvature CG
0G

νμ has been studied
previously in the BO approximation [32,33]. Eq. (11)
simplifies to the following SEI:

dPμ

dt
¼ RehχjF̂μ þ D̂μjχiR ≡ RehχjF̂ μjχiR: ð17Þ

Here, F̂ μ ≡ F̂μ þ D̂μ denotes the electromagneticlike
force operator whose expectation value gives the mean
force on nucleus μ. Our F̂ μ has a formal resemblance to the
classical force function FI

μ that was introduced in previous
works for calculating the time evolution of the nuclear
momentum PI

μ of a particular trajectory RIðtÞ in a
trajectory-based representation of the nuclear Schrödinger
equation [34–39]. In fact, one can show that PI

μ≡
PμðRIðtÞ;tÞ¼Reðp̂μχ=χÞjR¼RIðtÞ and FI

μ ≡ FμðRIðtÞ; tÞ ¼
ReðF̂ μχ=χÞjR¼RIðtÞ. Although PI

μ and FI
μ are auxiliary

quantities tied to the trajectory based methods, where R
and t are no longer independent variables, one expects to
recover dPμ=dt upon taking the ensemble average. In this
Letter, we have derived a representation independent
identity for the rate of change of the observable
hχjp̂μjχi, showing that it is governed by the novel force
operator on the right hand side of Eq. (17). Interestingly, the
right hand side can be evaluated in the position represen-
tation by replacing F̂ μ by FμðR; tÞ due to the formal
resemblance of these forces, see [40] and example below.
Next, we show that the same force operator appears in

the equations of motion for Lμ and Tn;marg. By following a
similar derivation, we can connect the rate of change of
angular momentum with an effective torque [40],

dLμ

dt
¼ RehχjRμ × F̂ μjχiR: ð18Þ

On the contrary, such a simple relation does not hold for
kinetic energy of an individual nucleus, i.e., dTμ;marg=

dt ≠ RehχjF̂ μ · v̂μjχiR. Replacing F̂ μ by F̂μ or Eμ does

not lead to the right formula either. Only by summing over
all nuclei can we achieve an equality involving F̂ μ [40],

dTn;marg

dt
¼ Rehχj

XNn

μ¼1

F̂ μ · v̂μjχiR: ð19Þ

Equations (10) and (19) imply that the magneticlike forces
do no work. One can immediately see this for the
intranuclear magnetic force because ðBμ × v̂μÞ · v̂μ ¼ 0.
On the other hand, although each RehχjD̂μ · v̂μjχi is non-
zero, they compensate one another upon summation due to
the internal nature of the force D̂μ.
To visualize the SEIs, we design an exactly solvable

model of two nuclei moving in one dimension. Let us
assume that the information of the electron-nuclear wave
function Ψ has been condensed into a nuclear wave
function χ that satisfies the following TDSE:

i∂tχ ¼ 1

2M

X2
μ¼1

ð−i∂Xμ
þ AμÞ2χ þ ϵχ: ð20Þ

Although Ψ is a complex function, we can always choose a
gauge such that χ is real. Here, instead of following the
conventional way of solving for χ with given time depen-
dent scalar and vector potentials and initial condition, we
go the other way around. By choosing a particular form of
time-evolving wave function χðX1; X2; tÞ, we aim to find
analytical forms of the corresponding A1, A2, and ϵ as
functions of X1, X2, and t that yield such a χ. In this work,
we choose χ to be a normalized Gaussian function of a
fixed width σ,

χðX1; X2; tÞ ¼
1

σ
ffiffiffi
π

p exp

�
−

1

2σ2
X2
μ¼1

½Xμ − gμðtÞ�2
�
; ð21Þ

whose center moves along a trajectory ½g1ðtÞ; g2ðtÞ�. Taking
the real part of Eq. (20), and using the fact that χ is chosen
to be real, we can deduce the form of ϵ in terms of χ and Aμ.
Here, we choose the following vector potentials yielding χ:

A1ðX1; X2; tÞ ¼ fðtÞ½−X2 þ g2ðtÞ� þMg01ðtÞ; ð22Þ

A2ðX1; X2; tÞ ¼ fðtÞ½X1 − g1ðtÞ� þMg02ðtÞ; ð23Þ

where fðtÞ and gμ are periodic functions in time, yielding a
spiral nuclear center trajectory (see [40] for details).
Because the nuclei move in one dimension, the intra-

nuclear magnetic field B is absent so that the generalized
Lorentz force reduces to the electromotive force Fμ ¼ Eμ.
However, propagating the Newton’s equation with only this
force F̄μ ¼ hχjFμjχi will lead to an incorrect trajectory for
the center of the nuclear wave packet. Because of the
presence of a nonzero internuclear Berry curvature
C12 ¼ ∂X1

A2 − ∂X2
A1 ¼ 2fðtÞ, the internuclear magnetic

force operators D̂1 ¼ −C12v̂2 and D̂2 ¼ C12v̂1 contribute to
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the correct force F̄μ þ D̄μ ¼ RehχjFμ þ D̂μjχi acting on
the nuclear wave packet.
This is illustrated in Fig. 1(a), where we compare

trajectories generated by the exact and incomplete mean
force. As can be seen, the exact force drives the nuclear
center to swirl around its initial position, while the
incomplete force produces a spurious acceleration of the
second nucleus in the X direction. Although the missing D̂μ

contributions are small relative to F̂μ (see [40]), its
cumulative effect in time can be sizable. After ten cycles,
this leads to a net displacement of X2 of about 0.1 Bohr.
In molecular dynamics, the size of D̂μ and its relative
importance are unknown and deserve further study.
Next, let us consider the kinetic energy change during

this swirling process. By direct computation, the kinetic
energy increase over the initial time is

Tn;margðtÞ − Tn;margð0Þ ¼
1

2M
σ2f2ðtÞ þ 1

2
Mv̄2: ð24Þ

Here, the first term on the right hand side of Eq. (24) is
purely a quantum effect. If we assume that the nuclear wave
packet is narrow and fðtÞ is small, this term is only of
secondary importance. By contrast, the dominant term is
the second one, where v̄ ¼ ½g01ðtÞ; g02ðtÞ� is the velocity of
the nuclear center of mass and 1

2
Mv̄2 ≡ Tcm is the classical

nuclear kinetic energy. In Fig. 1(b), we compare Tcm using
the trajectories generated by the exact and incomplete
forces. As shown, the incomplete force yields Tcm with
artificial oscillations around the exact curve.
Our model has great similarity with the current-driven

atomic water wheel model studied in [8], if we interpret X1

and X2 as two Cartesian coordinates of the same nucleus.
We emphasize that F̄þ D̄ is the key quantity that deter-
mines the stability and working efficiency of the water
wheel, see [40] for further discussions.

In Fig. 2, we also simulate the energy transfer between
electrons and nuclei after a vertical excitation to an excited
electronic state in a two-level model diatomic molecule
(details can be found in Supplemental Material [40]). This
is related to the early stage of a bond-breaking process [41],
particularly the reaction pathways of small molecules [42],
or the redistribution of energy of DNA and RNA [2,3].
Here, we idealize the twoBO surfaces as harmonic potentials
with an avoided crossing in the region R ¼ 0.5−1 Bohr. As
illustrated in Fig. 2(a), after vertical excitation from the
equilibrium position of the lower surface, the nuclear wave
packet χ starts propagatingon the upper one. Ifweneglect the
coupling of the two surfaces, χ undergoes perfect harmonic
oscillations around R ¼ 0.5 Bohr with a time period
T0 ¼ 13.6 fs. However, because of the coupling of the
surfaces, the nuclear wave packet splits into two branches
as it goes through the avoided crossing. One branch stays on
the upper surface while the other transfers to the lower one
accompanied by energy transfer from electrons to the nuclear
kinetic energy. This process also breaks the time periodicity
because the split wave packets feel the gradients (forces) of
two different BOpotentials. This is also reflected in Fig. 2(c),
where the rate of change of Tn;marg and Tn as functions of t
deviate from periodic behavior when t > T0=2. Here, we
focus on two points, t ¼ T0=8 and t ¼ 5T0=8, roughly
corresponding to the first two maxima. As shown, there is
a significant decrease in dTn;marg=dt from t ¼ T0=8 to
t ¼ 5T0=8. To understand this change, we use our identity
(19) and rewrite it as

FIG. 1. (a) Trajectory of the center of the nuclear wave packet
shown as a 2D plot. The initial position is at ð1;−1Þ. With the
incomplete force F̄, the nuclear center deviates from the correct
spiral trajectory after a few cycles. (b) Center of mass kinetic
energy Tcm as a function of t calculated with F̄ and F̄þ D̄. Here,
T0 ¼ 6.8 fs is the time period.

FIG. 2. (a) BO surfaces (in Hartree) with illustrative dots and
arrows indicating the nuclear vibration after a vertical excitation.
(b) jχj2, v ¼ Reðv̂χ=χÞ, and the exact force function in atomic
units evaluated at t ¼ T0=8, where T0 ¼ 13.6 fs. Forces from the
static BO surfaces are also shown as reference curves. To put all
these curves in one figure, jχj2 has been scaled by a factor of 1

2
, v

by a factor of 100 and all the forces by a factor of 5. (c) Rate of
change of Tn and Tn;marg as functions of time in unit of
10−2 Hartree=fs. Chosen instants of time are marked by colored
dots corresponding to the ones in (a). (d) same as in (b) except
evaluated at t ¼ 5T0=8.
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dTn;marg

dt
¼

Z
jχðR; tÞj2FðR; tÞvðR; tÞdR; ð25Þ

wherewe introduce a velocity function vðR; tÞ ¼ Reðv̂χ=χÞ.
In Figs. 2(b) and 2(d)we compare jχj2,F, and v at the chosen
times. As shown, in (d) jχj2 is broadened; and in the region
where jχj2 is large, the exact F and v become smaller in
absolute value although they change sign as a result of the
reversal of the moving direction. All of these changes
contribute to the drop of dTn;marg=dt at t ¼ 5T0=8.
As a side remark, the relative importance of dTn;geo=dt

can be deduced from Fig. 2(c). It is unimportant for t <
ð5T0=8Þ but starts to build up when χ repeatedly traverses
the nonadiabatic region. The example shown here corre-
sponds to an intermediate nonadiabatic coupling regime. In
the adiabatic regime, the effect of Tn;geo becomes much
smaller. Discussions on this along with the electronic
energy and population transfer in adiabatic regimes are
presented in Supplemental Material [40].
To better understand the exact force function, we

compare it with the forces calculated from the BO surfaces,
which are straight lines in Figs. 2(b) and 2(d). As shown in
(b), the exact force has similar slope with FBO2, although
amplified by quantum corrections. In (d), however, it
follows the slope of FBO1 for R < 1 Bohr while turning
to follow FBO2 for R > 1 Bohr, suggesting a split of the
nuclear wave packet at R ¼ 1 Bohr, as also indicated by the
emerging shoulder in jχj2. Our observation of the piecewise
behavior in the exact force in case of wave packet splitting
is also in line with the literature [29].
To summarize, in this Letter we have used the nuclear

TDSE of the exact factorization method to establish
subsystem Ehrenfest identities for the three main canonical
variables in classical and quantum mechanics. We have
shown that the same effective electromagnetic force oper-
ator F̂ μ appears in all three identities. The magnetic
component of the corresponding electromagnetic field
comes from two sources: (a) the more familiar intranuclear
Berry curvature associated with different Cartesian coor-
dinates of the same nucleus [31]; (b) the internuclear Berry
curvature calculated with arbitrary Cartesian coordinates of
two different nuclei. (a) has the classical interpretation of an
effective magnetic field acting on a given nucleus, while
(b) has no classical analog. In practical calculations, one
can take advantage of the recently developed exact fac-
torization-based density functional theory [43–46] to
evaluate these forces as functionals of the conditional
electronic density and nuclear probability density. One
can also apply the approximate Born-Oppenheimer fac-
torization to derive the same SEIs for approximate forces.
By condensing the enormous amount of information in the
electron-nuclear wave function into comprehensible quan-
tities such as force and velocity, we will gain more insight
into dynamical processes on the atomic scale.
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