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We introduce a class of noninvertible topological defects in ð3þ 1ÞD gauge theories whose fusion rules
are the higher-dimensional analogs of those of the Kramers-Wannier defect in the ð1þ 1ÞD critical Ising
model. As in the lower-dimensional case, the presence of such noninvertible defects implies self-duality
under a particular gauging of their discrete (higher-form) symmetries. Examples of theories with such a
defect include SO(3) Yang-Mills (YM) at θ ¼ π, N ¼ 1 SO(3) super YM, and N ¼ 4 SU(2) super YM at
τ ¼ i. We also introduce an analogous construction in ð2þ 1ÞD, and give a number of examples in Chern-
Simons–matter theories.
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Symmetries have been a driving force behind modern
advances in theoretical physics. Recent developments have
led to several extensions of the notion of global symmetry.
One such example is higher-form symmetry [1], which has
had numerous applications such as constraining the IR
phases of pure Yang-Mills (YM) theory [2].
Another type of generalized symmetry is noninvertible

symmetry. The prototypical example of such a symmetry is
the one arising from the Kramers-Wannier self-duality of
the ð1þ 1ÞD Ising model at the critical point. This duality
can be implemented by a topological defect lineN [3–5]. If
one performs the duality twice, one projects out the Z2-odd
operators, meaning that the composition rule of the
topological defect satisfies

N ×N ¼ 1þ ηZ2
; ð1Þ

with ηZ2
the symmetry defect implementing the Z2

twist of the spin system. The only topological defects in
the Ising CFT are N and ηZ2

, which means that there is no
inverse N −1 such that N −1 ×N ¼ 1, and therefore the
defect N cannot be thought of as implementing a group
action.

The basic idea of noninvertible symmetry is to consider
any topological defect as a form of generalized symmetry.
This means that one must extend the notion of symmetry
beyond groups, leading in ð1þ 1ÞD to a mathematical
construction known as a fusion category [6–8]. The Ising
category is one of the simplest such fusion categories.
Though noninvertible symmetries are relatively well

studied in ð1þ 1ÞD (see, e.g., Refs. [9–18] for recent
developments in continuum QFTs), examples in dimen-
sions greater than two remain limited, except in topological
QFTs. We mention just one example here [19], in which
noninvertible lines were used to study the string tension in
ð2þ 1ÞD Uð1Þ⋊SN semi-Abelian gauge theory.
In this Letter, we provide a general procedure for

obtaining noninvertible defects in 3þ 1D, starting with
any theory with ’t Hooft anomaly for discrete higher-form
symmetries of a particular form. By gauging a subset of the
symmetries appearing in the anomaly, the defect associated
with the remaining symmetry becomes noninvertible (such
a construction was first suggested in Ref. [20]). For the
particular cases we study, the resulting noninvertible defect
will be shown to be a generalization of the Kramers-
Wannier defect in ð1þ 1ÞD. Our defects will have similar
implications for self-duality of the gauge theories. Our
result can be seen as a continuum analog of the Kramers-
Wannier duality of lattice Z2 gauge theories in (3þ 1)D
[5], whose corresponding defect has been studied in
Ref. [21].
We illustrate the existence of these defects and their

potential dynamical applications through the example of
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SO(3) gauge theory with zero and one supercharges, as
well as N ¼ 4 SU(2) super YM. This Letter is accom-
panied by Supplemental Material, in which we give details
as well as various generalizations of our construction,
including to (2þ 1)-dimensional theories and (3þ 1)-
dimensional theories with symmetries besides Z2 [22].
General construction.—
Kramers-Wannier-like duality defect. Our starting point

is a ð3þ 1ÞD theory T with zero-form symmetry Zð0Þ
2

(which can be either linear or antilinear) and one-form

symmetry Zð1Þ
2 . Associated with these symmetries are

codimension-1 and -2 topological defects. We will denote

the background fields of Zð0Þ
2 and Zð1Þ

2 as Að1Þ and Bð2Þ,

respectively. The Zð0Þ
2 symmetry defect inserted on M3 in

the presence of Bð2Þ will be denoted by DðM3; Bð2ÞÞ.
Throughout we will assume that M3 is oriented.
For simplicity, assume that the spacetime manifold X4 is

spin. The two symmetries can have a mixed ’t Hooft
anomaly, captured by a 5d integral built from the back-
ground gauge fields Að1Þ and Bð2Þ. We will be interested in
the particular case of a ’t Hooft anomaly of the form

π

Z
X5

Að1Þ ∪
PðBð2ÞÞ

2
; ð2Þ

with PðBð2ÞÞ the Pontrjagin square of Bð2Þ and ∂X5 ¼ X4.

The mixed anomaly Eq. (2) implies that the Zð0Þ
2 defect

DðM3; Bð2ÞÞ is anomalous under Zð1Þ
2 transformations, and

hence only the combination

DðM3; Bð2ÞÞeiπ
R
M4

PðBð2ÞÞ=2 ð3Þ

with ∂M4 ¼ M3 is invariant under gauge transformations
of the background field Bð2Þ. Note that in Eq. (3) the
dependence on M4 is only through a term involving the
classical background Bð2Þ, so Eq. (3) should still be
regarded as a genuine 3d invertible defect.
We will be interested in understanding the gauging of

Zð1Þ
2 . Upon gauging, the background field Bð2Þ is promoted

to a dynamical field bð2Þ. From Eq. (3), we see that
DðM3; bð2ÞÞ is no longer well defined since it is not
invariant under the dynamical gauge transformations of
bð2Þ. To make it well defined, we must either couple to a
dynamical bulk, or couple to a 3d TQFT TðM3; bð2ÞÞ,
which cancels the anomaly, thereby absorbing the bulk
dependence. Since we will be interested in intrinsically 3d
defects, we will pursue the latter strategy. The TQFT
canceling the anomaly is not unique. However, it was
shown in Ref. [33] that any such TQFT can be factori-
zed into the decoupled tensor product of two theories
TðM3; bð2ÞÞ ¼ T̂ðM3Þ ⊗ A2;1ðM3; bð2ÞÞ, where T̂ðM3Þ

does not couple to the dynamical field bð2Þ. The theory
A2;1ðM3; bð2ÞÞ is simply Uð1Þ2 Chern Simons theory,
i.e., the minimal TQFT that lives on the boundary of

e
iπ
R
M4

Pðbð2ÞÞ=2
. Since tensoring a decoupled TQFT only

changes the overall normalization of the defect, we choose
the TQFT to be the minimal A2;1 for simplicity. Hence we
find a well-defined genuinely 3d defect

N ðM3Þ ≔ DðM3; bð2ÞÞA2;1ðM3; bð2ÞÞ: ð4Þ

Note thatN ðM3Þ explicitly depends on the dynamical field
bð2Þ. The defect N , when regarded as an operator, is linear

(antilinear) if and only if Zð0Þ
2 before gauging is linear

(antilinear).
We now show that N satisfies Kramers-Wannier-like

fusion rules; in particular, it is noninvertible. To begin,
consider the case in which N is linear. In this case the dual
N̄ is just equal to N itself. This follows since D ¼ D̄ from
D2 ¼ 1 and Ā2;1 ¼ A2;−1 ≅ A2;1, with the last equality
following from the fact that Uð1Þ2 is time-reversal sym-
metric as a spin-TQFT [34,35]. We also note that the tensor
product theory A2;1 ⊗ A2;−1, often called the “double-
semion” theory [36,37], is equivalent to Z2 Dijkgraaf-
Witten (DW) theory [38] with nontrivial DW twist. The

DW twist can be written as ð−1Þ
R
M3

a3
where a ∈

H1ðM3;Z2Þ is the Z2 gauge field. Indeed, the K matrix
for the double-semion theory, K ¼ diagð2;−2Þ, can be
rotated to that of the BF representation of the DW theory,
K ¼ ð0

2
2
1
Þ, by an SLð2;ZÞ transformation.

These considerations motivate the following result: upon
fusion of two N ðM3Þ defects, one obtains a nontrivial Z2

DW theory living on M3. Poincaré duality allows one to
exchange the sum over Z2 1 co-cycles a with a sum over

two-cycles Σ, upon which the DW twist e
iπ
H
M3

a3
becomes

the triple intersection number QðΣÞ of Σ in M3 [39]. This
gives the following fusion rules:

N ðM3Þ ×N ðM3Þ

¼ 1

jH0ðM3;Z2Þj
X

Σ∈H2ðM3;Z2Þ
ð−1ÞQðΣÞLðΣÞ; ð5Þ

where LðΣÞ ≔ eiπ
H
Σ
bð2Þ . The normalization factor is

related to the volume of the gauge group of the DW
theory. A more explicit derivation of both the normaliza-
tion and the fusion rules will be given in the Supplemental
Material [22]. Since this is a sum of more than one
operator, we see that N is a noninvertible defect.
On the other hand, in the case when N is antilinear, we

have N ×N ¼ DA2;1 ×DA2;1 ¼ D2A2;−1 ×A2;1, since
D flips the orientation of A2;1 as the former passes though
the latter. Combining this withD2 ¼ 1, we see thatN ×N
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again hosts the double-semion theory, giving the same
fusion rules as in Eq. (5). In summary, N satisfies the
fusion rule (5) regardless of whether it is linear or antilinear.
We may now consider the fusion ofN ðM3Þ and LðΣÞ for

some Σ embedded inM3. Note that in Eq. (4) the one-form
symmetry of A2;1 is coupled to the bulk dynamical field
bð2Þ. This means that the Wilson line of A2;1, which has a
nontrivial one-form charge, has to be bounded by the bulk
global one-form symmetry generator L. In other words,
L can end on N without costing energy, and furthermore it
can be absorbed. In the process of absorption, the boundary
of L, identified with the Wilson line, sweeps out a surface
Σ in M3, producing a sign ð−1ÞQðΣÞ from the framing
anomaly of theWilson line. This effect is derived in the first
section of the Supplemental Material [22]. Hence we obtain
the fusion rules

N ðM3Þ × LðΣÞ ¼ ð−1ÞQðΣÞN ðM3Þ; ð6Þ

where Σ is embedded in M3.
Finally, the L × L fusion rule is obvious,

LðΣÞ × LðΣÞ ¼ 1: ð7Þ

The fusion rules (5), (6), and (7) are reminiscent of the fusion
rules of the Ising fusion category in two dimensions. For this
reason, we refer to the noninvertible defect N in the 4d

theory T =Zð1Þ
2 as a “Kramers-Wannier-like defect.” Though

we do not work it out here, we expect these fusion rules to
yield a fusion three-category [42,43]. Aswe now explain,N

implements a self-duality transformation on T =Zð1Þ
2 .

Self-duality. We now explain why the gauged theory

T =Zð1Þ
2 has a notion of self-duality. We begin by consid-

ering the partition function of T =Zð1Þ
2 [44],

ZT =Zð1Þ
2

½Cð2Þ� ¼
Z

Dbð2ÞZT ½bð2Þ�eiπ
R
X4

Cð2Þbð2Þ
; ð8Þ

where Cð2Þ is the background field for the quantum Ẑð1Þ
2

symmetry, whose corresponding defect is L. If we further
gauge Cð2Þ, the last factor becomes a delta functional for
bð2Þ and we reobtain the original theory T .
To find self-duality in T =Zð1Þ

2 , we first include a
Dijkgraaf-Witten term ðπ=2ÞPðCð2ÞÞ and then gauge.
This gives

Z
Dcð2ÞZT =Zð1Þ

2

½cð2Þ�ei
R
X4

π
2
Pðcð2ÞÞþπcð2ÞAð2Þ

¼
Z

Dcð2ÞDbð2ÞZT ½bð2Þ�ei
R
X4

πcð2Þbð2Þþπ
2
Pðcð2ÞÞþπcð2ÞAð2Þ

¼
Z

Dbð2ÞZT ½bð2Þ�e−i
π
2

R
X4

Pðbð2ÞþAð2ÞÞ
; ð9Þ

where we have made a change of variables cð2Þ → cð2Þ −
bð2Þ − Að2Þ and dropped a contribution from the TQFTR
Dcð2Þeiðπ=2Þ

R
Pðcð2ÞÞ, which can be continuously deformed

to the trivial theory. We next use the following anomalous

transformation law of T under global Zð0Þ
2 transformations:

ZT ½bð2Þ�e−i
π
2

R
X4

Pðbð2ÞÞ ¼
�
ZT ½bð2Þ�; Zð0Þ

2 is linear

Z�
T ½bð2Þ�; Zð0Þ

2 is antilinear:

ð10Þ

Equation (9) then reduces to

ZT =Zð1Þ
2

½Að2Þ�e−i
π
2

R
X4

PðAð2ÞÞ ð11Þ

if Zð0Þ
2 is linear, and

Z�
T =Zð1Þ

2

½Að2Þ�ei
π
2

R
X4

PðAð2ÞÞ ð12Þ

if Zð0Þ
2 is antilinear. To complete the self-duality, we need

only add a compensating counterterm (and in the antilinear
case, do a complex conjugation K).
We now recall the operations S and T defined in

Ref. [1] (see also Refs. [45,46]); in the current context S

corresponds to gauging of a Zð1Þ
2 form symmetry and T

corresponds to coupling to an invertible phase

ðπ=2ÞPðBð2ÞÞ. From the above, we conclude that T =Zð1Þ
2

is self-dual under TST if Zð0Þ
2 is linear, and under TKST if

Zð0Þ
2 is anti-linear.
We have seen that T =Zð1Þ

2 has a self-duality, as well as a
non invertible defect with Kramers-Wannier-like fusion
rules. We now argue that the two facts are related, following
Ref. [23]. First, it is simple to argue that the existence
of a self-duality should imply a noninvertible defect of
Kramers-Wannier type. Indeed, note that gauging, and
hence the full operation TST (or TK ST), can be imple-
mented by a codimension-1 topological defect. We will
denote the total defect byN ðX3Þ. By stacking two copies of
N ðX3Þ, we are left with a condensate as in Fig. 1. Thus we
obtain fusion rules

FIG. 1. Any theory X with a self-duality admits a noninvertible
defect with Kramers-Wannier–type fusion rules. X � is the TST
(or TK ST) transform of X .
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N ðM3Þ ×N ðM3Þ ¼ CðM3Þ: ð13Þ

The condensate CðM3Þ can be understood by taking the
one-form gauge theory to live in a small tubular neighbor-
hood of M3 with Dirichlet boundary conditions. As shown
in the Supplemental Material [22], this can be reduced to a
zero-form gauge theory living on M3 itself, with the
condensate taking the form

CðM3Þ ¼
1

jH0ðM3;Z2Þj
X

Σ∈H2ðM3;Z2Þ
ð−1ÞQðΣÞLðΣÞ: ð14Þ

This reproduces the fusion rules of Eq. (5). Note that the
factor of ð−1ÞQðΣÞ descends from the T operation before S
in the self-duality, as derived explicitly in the Supplemental
Material [22]. It is easily verified that CðM3Þ squares to
itself up to normalization.
Conversely, assuming that we have a defect with fusion

rules given in Eq. (5), there must be a corresponding self-
duality. Indeed, we may begin by inserting a fine mesh of
the condensate CðM3Þ (which is itself a fine mesh of
surfaces), and then replacing it with pairs of N ðM3Þ as
shown schematically in Fig. 2. But assuming that we started
with a fine enough mesh, each loop of N ðM3Þ is now
contractible, and may be evaluated to a number. Thus with
appropriate normalization we reobtain the original theory.
Examples.—We now give some examples of theories

with Kramers-Wannier–type noninvertible defects, and
hence with self-dualities.
SO(3) Yang-Mills theory at θ ¼ π. As a first example,

take the theory T to be a pure SU(2) Yang-Mills theory at

θ ¼ π. This theory has a Zð1Þ
2 1-form symmetry, as well as a

time-reversal symmetry T. These two symmetries are
known to have an anomaly of the form (2), with Að1Þ

replaced by the first Stiefel-Whitney class wTX5

1 of the
tangent bundle of X5 [49]. Our general construction tells us

that upon gauging Zð1Þ
2 , the codimension-1 defect imple-

menting T becomes non-invertible. Indeed, the resulting

theory T =Zð1Þ
2 is SO(3) Yang-Mills at θ ¼ π, which lacks

the usual time-reversal symmetry since θ is 4π periodic.
Instead, it contains the noninvertible defect N implement-
ing a self-duality transformation under TK ST.

The noninvertible defectN also suggests the structure of
phases of SO(3) Yang-Mills as a function of the theta angle.
From the UV perspective, we find that

TK ST∶½SOð3Þ; θ� → ½SOð3Þ; 2π − θ�: ð15Þ

Hence θ ¼ �π mod 4π is invariant under TK ST. At these
points the defect implementing the transformation TK ST
between different theories at generic theta becomes one
implementing self-duality of a single theory. This suggests
that there should be a phase transition at these fixed values
of theta. Indeed, just such a transition is expected on the
basis of, e.g., soft supersymmetry breaking. See Fig. 3 for a
schematic phase diagram.
Let discuss this phase diagram further. In Ref. [24] it was

argued via soft supersymmetry breaking that for jθj < π the
theory flows to a Z2 TQFT, while for π < jθj < 2π, the
theory flows to a trivially gapped phase. The phase
transitions at θ ¼ �π mod 4π are transitions between these
two low-energy phases. Our result is in agreement
with [21], where a noninvertible defect was found in a
lattice model which exhibits the same phase transition.
N ¼ 1 SO(3) super Yang-Mills theory. Next we take

T to be N ¼ 1 SU(2) super Yang-Mills. The symmetry of

this theory is Zð0Þ
4 × Zð1Þ

2 , where Zð0Þ
4 contains the fermion

parity ZF
2 as a normal subgroup. There is a mixed anomaly

between Zð0Þ
4 and Zð1Þ

2 with the anomaly inflow action as in

Eq. (2), where Að1Þ is now the background field of Zð0Þ
4 .

Note that ZF
2 ⊂ Zð0Þ

4 is anomaly free. The low-energy

dynamics are well known: the Zð0Þ
4 is spontaneously broken

to ZF
2 , and there are two gapped vacua related by

Zð0Þ
2 ≔ Zð0Þ

4 =ZF
2 . Each vacuum is trivially gapped.

After gauging Zð1Þ
2 , we obtain N ¼ 1 SO(3) super YM.

Since Zð0Þ
2 is extended by a nonanomalous ZF

2 , the fusion
rules for the Kramers-Wannier duality defect discussed in
the previous section are modified. Denote the 3d defect

implementing ZF
2 by FðM3Þ, and the Zð0Þ

2 defect before

gauging asDðM3Þ. The fact that they together generateZð0Þ
4

implies D ×D ¼ F and F × F ¼ 1. Correspondingly, the
fusion rule (5) becomes

N ðM3Þ ×N ðM3Þ

¼ FðM3Þ
jH0ðM3;Z2Þj

X
Σ∈H2ðM3;Z2Þ

ð−1ÞQðΣÞLðΣÞ: ð16Þ

FIG. 2. A theory with a Kramers-Wannier defect has a self-
duality since the mesh of C can be replaced by a set of
topologically trivial loops of N .

FIG. 3. Phase diagram of SO(3) YM as a function of θ.
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The other fusion rules (6) and (7) are unmodified.
Equation (16) can be understood as an extension of the
noninvertible symmetry by an invertible symmetry ZF

2 .
There are still two vacua in the SO(3) theory [24]. One

vacuum remains trivially gapped, while the other vacuum
supports a nontrivial Z2 TQFT. Thus the two vacua are not
exchanged by a conventional 0-form symmetry. Instead,
they are exchanged by acting with a noninvertible line N
implementing the self-duality T ST. The existence of the
two vacua related by self-duality can be viewed as
spontaneous breaking of the noninvertible symmetry.
N ¼4 SU(2) super Yang-Mills theory at τ ¼ i. Finally,

we note that N ¼ 4 SOð3Þ− super Yang-Mills theory at
τ ¼ i is invariant under S-duality, which effectively maps

τ → −1=τ [24]. This S duality is an invertible Zð0Þ
2

symmetry. There is also a Zð1Þ
2 one-form symmetry, which

has a mixed anomaly with S duality

ZSOð3Þ− ½−1=τ; Bð2Þ� ¼ e
iπ
2

R
X4

PðBð2ÞÞ
ZSOð3Þ− ½τ; Bð2Þ�; ð17Þ

following from ZSUð2Þ½τ;Bð2Þ�¼ZSOð3Þþ ½−1=τ;Bð2Þ�. Hence,
the general results of the previous section apply here
as well.
Concretely, we take T to beN ¼ 4 SOð3Þ− super YM at

τ ¼ i. Then TS T is SU(2) super YM at τ ¼ i. Our general
results imply that SU(2) super YM at τ ¼ i contains a
noninvertible defect N implementing the Kramers-
Wannier self-duality under S. More generally, on the
conformal manifold parametrized by τ ¼ 2πi=g2, SU(2)
super YM theories come in pairs related by

S∶½SUð2Þ; g� → ½SUð2Þ; 2π=g�: ð18Þ

The theory at the fixed point g ¼ ffiffiffiffiffiffi
2π

p
is the 4D analog of

the topological transition studied in Ref. [53].
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Note added.—Recently, we were informed that work on a
similar topic will appear in Ref. [48].
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