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The difficulty in manipulating quantum resources deterministically often necessitates the use of
probabilistic protocols, but the characterization of their capabilities and limitations has been lacking. We
develop a general approach to this problem by introducing a new resource monotone that obeys a very
strong type of monotonicity: it can rule out all transformations, probabilistic or deterministic, between
states in any quantum resource theory. This allows us to place fundamental limitations on state
transformations and restrict the advantages that probabilistic protocols can provide over deterministic
ones, significantly strengthening previous findings and extending recent no-go theorems. We apply our
results to obtain a substantial improvement in bounds for the errors and overheads of probabilistic
distillation protocols, directly applicable to tasks such as entanglement or magic state distillation, and
computable through convex optimization. In broad classes of resources, we strengthen our results to show
that the monotone completely governs probabilistic transformations—it serves as a necessary and sufficient
condition for state convertibility. This endows the monotone with a direct operational interpretation, as it
can exactly quantify the highest fidelity achievable in resource distillation tasks by means of any
probabilistic manipulation protocol.
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Introduction.—The extent of our ability to manipulate
different quantum resources determines how well we can
utilize them in practice. This can be broadly formulated as
the question of resource convertibility: When can one
resource state be transformed into another under the
restrictions imposed by a given physical setting? A repre-
sentative example of such conversion is the process of
distillation (purification), indispensable in the applications
of resources such as quantum entanglement [1] and magic
states [2] due to the noise inherent in the preparation and
manipulation of quantum systems. Understanding the exact
conditions for the existence of physical transformations
between quantum states has attracted significant attention
from the early days of quantum information theory [3–20].
In addition to providing insight into practical resource
manipulation protocols, such results establish the ultimate
limits of resource manipulation in the form of no-go
theorems that identify the regimes in which certain trans-
formations are not simply difficult to perform, but truly
physically impossible. This latter aspect is particularly
important as it allows one to certify the optimality of
practical protocols and reveal fundamental restrictions
imposed by the laws of quantum mechanics.
The formalism of quantum resource theories [21,22]

provides the tools to understand and constrain the con-
version of resources in a unified approach across different
physical settings. An important part of such tool sets are
resource monotones, which can establish restrictions on
feasible conversion schemes. Although this avenue has
lately seen significant attention in the context of general

resource theories [13,15,16,19,23–30], it has several lim-
itations. First, deciding the convertibility between states in
general settings typically requires one to compare infinitely
many monotones [7,13,15,31], hindering the practical
applicability of these methods. Another major downside
to many of such approaches is that they can only character-
ize deterministic transformations, i.e., ones which succeed
with certainty. Because of the difficulty in realizing such
exact transformations, practical protocols typically exploit
measurement-based schemes that are inherently probabi-
listic in nature [32,33]. It is already known from the theory
of quantum entanglement that probabilistic manipulation
methods, such as stochastic local operations and classical
communication (SLOCC), can significantly enhance our
capability to perform certain transformations [5,34–36]. It
then becomes an important problem to extend general
resource-theoretic approaches to completely characterize
also nondeterministic resource manipulation.
To address this, we introduce a new resource monotone,

the projective robustness ΩF , which obeys the strongest
type of monotonicity: it can never increase under any
resource transformation, deterministic or probabilistic. The
measure is computable through convex optimization, pro-
viding an accessible criterion that can rule out all trans-
formations between pairs of states, including the most
general forms of probabilistic protocols. We use this to
significantly strengthen and extend previously known no-
go theorems in the probabilistic manipulation of resources.
In particular, we provide tighter bounds on the errors
and overheads incurred in probabilistic distillation tasks,
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revealing fidelity thresholds that cannot be achieved
through any physical means. Our results establish the
ultimate limitations on the performance of all resource
manipulation protocols, thus also constraining the advan-
tages that can be gained by employing probabilistic trans-
formations over deterministic ones. The methods rely only
on the basic laws of quantum mechanics and are therefore
directly applicable in a wide variety of physical contexts,
which we exemplify through applications to concrete
settings such as entanglement, coherence, and magic state
distillation.
Notably, our no-go theorems can serve not only as

necessary conditions for resource manipulation, but also
as sufficient ones. We show that in several types of quantum
resources—e.g., in the whole class of affine resource
theories, which includes important examples such as
coherence, asymmetry, and imaginarity, as well as in the
distillation of quantum entanglement with nonentangling
operations—the projective robustness ΩF completely
governs probabilistic convertibility between states. This
establishes ΩF as an operationally meaningful monotone
that plays a fundamental role in understanding the manipu-
lation of quantum resources, exactly quantifying the best
achievable fidelity in resource distillation achievable
through any probabilistic protocol.
Here we introduce the main concepts and results.

Detailed technical derivations and additional extensions
can be found in [37].
Resource transformations.—Resource theories are

frameworks concerned with manipulating quantum systems
under some physical constraints on the allowed states and
operations [21,22]. Any such restriction singles out the free
states F and the free operations O that are allowed within
the restricted setting. For our results to be as general as
possible, we only make two basic assumptions about the set
of free states F : that it is closed and convex. In a similar
axiomatic manner, we take O to be the maximal physically
consistent set of free operations, namely, all channels that
do not generate a given resource. Deterministic trans-
formations E ∈ O are then completely positive and trace-
preserving maps for which EðσÞ ∈ F for all free σ.
We will model probabilistic transformations using sto-

chastic quantum operations, that is, ones that are not
necessarily trace preserving. Such maps can be thought
of as being part of a quantum instrument [38,39] composed
of free operations, and we take it as an axiom that all
probabilistic protocols in the given theory take this form.
The question of probabilistic convertibility between two
states then reduces to the existence of a map EðρÞ ¼ pρ0 for
some p ∈ ð0; 1� where E is a subnormalized free operation,
that is, a completely positive and trace-nonincreasing map
such that EðσÞ ∝ σ0 ∈ F for all σ ∈ F . We use O to denote
both deterministic and probabilistic (trace-nonincreasing)
free maps. In the settings of interest discussed in this work,
this is the largest possible choice of free probabilistic

transformations, meaning that all no-go results shown
for the operations O will necessarily apply to any other
physical type of free operations.
Resource monotones.—A resource monotone MF is any

function which is monotonic under deterministic free
operations, that is, MF ðρÞ ≥ MF(EðρÞ) for any channel
E ∈ O [22,40]. Any such monotone can be used to rule out
the existence of a transformation between two states—if
MF ðρÞ < MF ðρ0Þ, then there cannot exist a free operation
that transforms ρ to ρ0 with certainty. The situation is more
complicated when probabilistic transformations are con-
cerned [40], and in fact most known resource monotones
can never be used to rule out the existence of such
stochastic protocols.
Two monotones that have found a variety of uses in the

description of quantum resources are the (generalized)
robustness RF [41,42] and the resource weight WF [43].
The two measures can both be expressed in terms of the
max-relative entropy Dmax [42], the nonlogarithmic variant
of which we define as

RmaxðρkσÞ ≔ 2DmaxðρkσÞ ¼ inf fλjρ ≤ λσg; ð1Þ

where ρ ≤ λσ means that λσ − ρ is positive semidefinite.
We can then write RF ðρÞ≔minσ∈FRmaxðρkσÞ andWF ðρÞ ≔
½minσ∈FRmaxðσkρÞ�−1.
Although both the robustness and weight are operationally

useful monotones [19,29,30,44–47], they generally do not
provide tight restrictions on probabilistic transformations
[29,30]. The starting point of this Letter is the observation
that stronger limitations can be obtained by introducing a
new monotone which combines the properties of the two.
Projective robustness.—We define the projective robust-

ness ΩF as

ΩF ðρÞ ≔ min
σ∈F

RmaxðρkσÞRmaxðσkρÞ: ð2Þ

The quantity owes its name to the fact that, for fixed ρ and
σ, the expression lnRmaxðρkσÞRmaxðσkρÞ is known as the
Hilbert projective metric [8,48,49]. This metric has found
use in understanding transformations of pairs of quantum
states [8,12], but has not been applied as a resource
monotone before.
The projective robustness obeys a number of useful

properties [37]. It is important to note that ΩF will not be
finite for all states: ΩF ðρÞ < ∞ if and only if there exists a
free state σ such that suppρ ¼ suppσ. In most commonly
encountered resource theories, this means that ΩF will
always be finite for full-rank states, but will diverge to
infinity for resourceful pure states. However, since adding a
small amount of noise can make any state full rank, we will
see that it can lead to useful results even when pure states
are considered.
Importantly, ΩF can always be computed as a convex

optimization problem. We have that
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ΩF ðρÞ ¼ inf fγ ∈ Rþj ρ ≤ σ̃ ≤ γρ; σ̃ ∈ coneðFÞg

¼ sup

�
TrAρ
TrBρ

����A;B ≥ 0;
TrAσ
TrBσ

≤ 1 ∀ σ ∈ F

�
; ð3Þ

where coneðFÞ ¼ fλσjλ ∈ Rþ; σ ∈ Fg denotes the cone
generated by the set of free states. In many relevant cases
of resources—such as quantum coherence, magic, or the
theory of nonpositive partial transpose—this optimization
reduces to a semidefinite program.
No-go theorem for resource transformations.—A

notable property of the projective robustness is the very
strong form of monotonicity that it obeys: ΩF cannot be
increased by any free operation, not even probabilistically.
Theorem 1.—If there exists a free transformation from ρ

to ρ0, probabilistic or deterministic, then ΩF ðρÞ ≥ ΩF ðρ0Þ.
The theorem thus establishes a necessary condition for

the existence of any probabilistic transformation between
two states, valid in all quantum resource theories.
At the basic level, the result shows that whenever

there exists a free probabilistic operation E ∈ O which
transforms ρ to some output state with nonzero pro-
bability, it necessarily holds that ΩF ðρÞ ≥ ΩF(EðρÞ) ¼
ΩF ðEðρÞ=TrEðρÞÞ. However, the statement of Theorem 1
is actually stronger than this. An intriguing phenomenon in
probabilistic resource manipulation is that there exist cases
where the transformation ρ → ρ0 is impossible with any
nonzero probability, but one can nevertheless approach ρ0
arbitrarily closely [36]. Then, there can exist a sequence
of operations ðEnÞn ∈ O such that TrEnðρÞ → 0 but
½EnðρÞ=TrEnðρÞ� → ρ0. That is, the transformation might
only be possible asymptotically, with probability of success
vanishing as the fidelity approaches 1. The monotonicity of
ΩF covers also this case: whenever such a protocol exists,
we must have ΩF ðρÞ ≥ ΩF ðρ0Þ.
In addition to providing quantitative limitations that we

will explore shortly, the restriction imposed here immedi-
ately strengthens and generalizes the no-go theorems of
[24]—no state with a finiteΩF can be transformed to a state
ρ0 for which ΩF ðρ0Þ ¼ ∞, where the latter includes all pure
resourceful states. This also extends previous results that
dealt with the impossibility of entanglement [36,50–53]
and coherence purification [54,55].
Another monotone with a similar type of monotonicity is

the Schmidt number in entanglement theory [56], but this
quantity is significantly more difficult to compute than ΩF
for general quantum states, and its discrete character makes
it unclear whether it could lead to tight quantitative bounds
like the ones that we consider in this work.
Sufficient condition for probabilistic transformations.—

We will now show that Theorem 1 can also give a sufficient
condition for transforming resources. In such cases, it
follows that the projective robustnessΩF completely governs
the ability to transform one state into another through
probabilistic means, as long as all resource-nongenerating

operations O are considered [57]. This result will require us
to consider different types of resources separately.
We begin with an important class of theories dubbed

affine resource theories [13], which includes quantum
coherence [58], asymmetry [59], thermodynamics [10], or
the recently studied imaginarity [60,61]. Such theories are
distinguished by the fact that the set of free states F is the
intersection of some affine subspace with the set of all states.
Theorem 2.—In any affine resource theory, there exists

a free probabilistic transformation ρ → ρ0 if and only if
ΩF ðρÞ ≥ ΩF ðρ0Þ.
The proof of this result combines insights from the

characterization of affine resource measures in [19] with a
proof method of [8], where transformations of pairs of
quantum states were considered.
The case of nonaffine theories requires a slightly differ-

ent approach. Let us introduce a variant of the max-relative
entropy Rmax as

RF
maxðρkσÞ ≔ inffλjρ ≤F λσg; ð4Þ

where A ≤F B ⇔ B − A ∈ coneðFÞ. The standard robust-
ness RF

F [41], also known as free robustness, is a resource
monotone defined as RF

FðρÞ ≔ minσ∈FRF
maxðρkσÞ. We

analogously define the free projective robustness as

ΩF
F ðρÞ ≔ min

σ∈F
RF
maxðρkσÞRmaxðσkρÞ: ð5Þ

Notice that ΩF
F ðρÞ ≥ ΩF ðρÞ in general. ΩF

F is not useful in
affine resource theories as it diverges for all resourceful states;
it can, however, be applied in theories where the set of free
states F is of full measure in the set of all states. Such theories
are known as full dimensional, and include, e.g., quantum
entanglement [32] or magic (nonstabilizerness) [62,63]. We
then give the following sufficient condition, which we will
see to be necessary and sufficient in relevant cases.
Theorem 3.—In any full-dimensional resource theory,

there exists a free probabilistic transformation ρ → ρ0 if
ΩF ðρÞ ≥ ΩF

F ðρ0Þ. Conversely, when such a transformation
exists, then ΩF ðρÞ ≥ ΩF ðρ0Þ and ΩF

F ðρÞ ≥ ΩF
F ðρ0Þ.

Probabilistic resource distillation.—The task of distil-
lation is concerned with extracting some noiseless, pure
resource state ϕ from a noisy state ρ. Since such trans-
formations are often very difficult to achieve exactly, we
allow for a small error in the conversion. We are then
concerned with achieving a transformation ρ → τ probabil-
istically, where τ is a state close to the target state in fidelity:
Fðτ;ϕÞ ≥ 1 − ε. Our aim will be to establish thresholds on
the fidelity achievable through any such protocol.
First studied in entanglement theory [34,36,50,52,64–66],

purification tasks of this type have recently been investigated
in the context of general resource theories. Of particular
relevance are recent bounds based on the robustness RF
[19,29] and the resource weight WF [29,30], although most
of their applications were limited to deterministic protocols.
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In a different approach, [24] showed a relation that we will
refer to as the eigenvalue bound, aiming to understand trade-
offs between the error ε and the achievable probability p of
successful transformation. However, we can show [37] that,
as a restriction on achievable probabilities, the bound of [24]
is vacuous: its dependence on the probabilityp is superficial,
and the bound holds equally for all probabilistic protocols.
We will also see that, as a bound on distillation error, it
performs much worse than restrictions obtained using ΩF .
We now use the projective robustness to establish a

general error threshold that cannot be exceeded by any
probabilistic protocol in any quantum resource theory.
Theorem 4.—If there exists a free transformation ρ → τ

such that τ is a state satisfying Fðτ;ϕÞ ≥ 1 − ε for some
resourceful pure state ϕ, then

ε ≥
�

FF ðϕÞ
1 − FF ðϕÞ

ΩF ðρÞ þ 1

�
−1

ð6Þ

where FF ðϕÞ ¼ maxσ∈Fhϕjσjϕi.
Such probabilistic distillation thresholds have previously

attracted significant attention in the study of quantum
entanglement [36,50,52,64], but even in that case no
general quantitative bound was known. In entanglement
theory, the maps O correspond to all nonentangling pro-
tocols, and the result can be thought of as a threshold for the
manipulation of entanglement under such extended trans-
formations, or under the more restricted class of LOCC.
Achievability.—In Fig. 1 we plot our bound applied to

one-shot coherence distillation, showing that Theorem 4
gives the tightest possible restriction on the achievable
error. This motivates the question of whether our threshold
can exactly characterize probabilistic distillation of resour-
ces in more general settings. Indeed, we show this to be the
case whenever the target pure state ϕ is chosen to be a
maximally resourceful state ϕ⋆, a very natural choice in
practical distillation protocols—for instance, in entangle-
ment theory, this can be understood as a maximally
entangled state of some dimension.
Theorem 5.—Let ϕ⋆ be a state that maximizes the

robustness RF among all states of the same dimension.
Then, as long as either: (i) the given resource theory is
affine, or (ii) it holds that RF ðϕ⋆Þ ¼ RF

F ðϕ⋆Þ, then there
exists a protocol that achieves the bound of Theorem 4.
Specifically, for any state ρ,

inf
E∈O

�
1 − F

�
EðρÞ
TrEðρÞ ;ϕ⋆

��
¼

�
FF ðϕ⋆Þ

1 − FF ðϕ⋆Þ
ΩF ðρÞ þ 1

�
−1
:

ð7Þ

Let us discuss the applicability of this result. In addition
to the vast class of all affine resource theories, the theorem
is valid in full-dimensional theories whenever the robust-
ness RF ðϕ⋆Þ equals the standard robustness RF

Fðϕ⋆Þ, which
is satisfied in theories such as entanglement [70] (including

entanglement of higher Schmidt rank [71] and genuine
multipartite entanglement [72]) as well as multilevel
quantum coherence [71]. Theorem 5 thus gives an exact
expression for the tightest achievable fidelity threshold in
resource theories such as coherence, entanglement, or
asymmetry.
Theorem 5 can alternatively be used to quantify the

maximal resource that can be distilled from ρ probabilisti-
cally, up to given accuracy. For instance, in the resource
theory of entanglement with the maximally entangled states
jϕmi ¼

P
m
i¼1ð1=

ffiffiffiffi
m

p Þjiii, we have

sup
E∈O

�
m

����F
�

EðρÞ
TrEðρÞ ;ϕm

�
≥ 1 − ε

�
¼



ε

1 − ε
ΩF ðρÞ þ 1

�
:

ð8Þ
Many-copy distillation overheads.—In practice, one

often aims to minimize the transformation error by using
more input copies of the given state. An important
application of Theorem 4 is to lower bound the overhead
required in many-copy transformations.
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FIG. 1. Bounding achievable error in coherence distillation. We
plot lower bounds on the error ε incurred in distilling a maximally
coherent state jþihþj from the noisy state AγðjþihþjÞ under
maximally incoherent operations [67,68], where Aγ is the
amplitude damping channel with damping parameter γ. Plotted
are bounds based on the projective robustness ΩF (Theorem 4),
robustness RF [19,69], weight WF [29,30], and the eigenvalue
bound [24]. Achievable performance of probabilistic protocols
[54] is then plotted for p ∈ f0.9; 0.5; 0.1g (from top to bottom,
respectively). The robustness RF is known to tightly bound
deterministic transformations, indicating the region (shaded
green) that can be achieved with probability 1 [19,69]. On the
other hand, we see that ΩF tightly bounds the forbidden region,
where the given error cannot be achieved with any probability
(shaded red). This is indeed the best possible bound, since
achievable probabilistic protocols span the entire region between
the deterministically achievable error and our probabilistic no-go
bound. Conversely, the eigenvalue bound of [24] fails to provide
useful restrictions.
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Corollary 6.—Assume that the given resource theory is
closed under tensor product, i.e., σ; σ0 ∈ F ⇒ σ ⊗ σ0 ∈ F .
Then, any free probabilistic transformation ρ⊗n → τ such
that τ is a state satisfying Fðτ;ϕÞ ≥ 1 − ε for some
resourceful pure state ϕ requires at least logΩF ðρÞð1 − εÞ½1 −
FF ðϕÞ� − logΩF ðρÞεFF ðϕÞ copies of ρ.
We demonstrate the performance of this bound in magic

state distillation in Fig. 2, where we see that it is not much
lower than the best known deterministic bound given by
the weight WF [29,30]. This could suggest that employing
probabilistic manipulation schemes cannot give signi-
ficant advantages over deterministic ones in practical
error regimes. However, a better understanding of how
closely the bounds can be approached by feasible distil-
lation protocols would be required to make definitive
conclusions.
Conclusions.—We introduced the projective robustness

ΩF , a powerful resource monotone that allowed us to reveal
universal restrictions on the manipulation of quantum
resources. We established no-go theorems for probabilistic
transformations of quantum states in arbitrary resource
theories, which in fact become necessary and sufficient for
certain types of resources such as all affine theories. We
demonstrated the usefulness of the restrictions by applying
them to the problem of distillation, establishing bounds that
conclusively rule out the possibility of purifying resources
in certain error regimes.

Beyond general bounds on the capabilities of all prob-
abilistic protocols as established here, one might be
interested in better understanding the achievable perfor-
mance of resource transformations with some probability,
and in particular the possible trade-offs between proba-
bilities and transformation errors. We address this in [37]
with a complementary approach, also based on convex
optimization.
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