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Arbitrarily long quantum computations require quantum memories that can be repeatedly measured
without being corrupted. Here, we preserve the state of a quantum memory, notably with the additional use
of flagged error events. All error events were extracted using fast, midcircuit measurements and resets of
the physical qubits. Among the error decoders we considered, we introduce a perfect matching decoder that
was calibrated from measurements containing up to size-four correlated events. To compare the decoders,
we used a partial postselection scheme shown to retain ten times more data than full postselection.
We observed logical errors per round of 2.2� 0.1 × 10−2 (decoded without postselection) and
5.1� 0.7 × 10−4 (full postselection), which was less than the physical measurement error of 7 × 10−3

and therefore surpasses a pseudothreshold for repeated logical measurements.
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Introduction.—Preparing and preserving logical quan-
tum states is necessary for performing long quantum
computations [1]. Because noise inevitably corrupts the
underlying physical qubits, quantum error correction
(QEC) codes have been designed to detect and recover
from errors [2–6]. Significant efforts are currently focused
on demonstrating capabilities that will be necessary for
implementing practical QEC. An optimal choice of a code
varies depending on the device and its noise properties [7].
Notable experimental implementations include NMR [8,9],
ion traps [10–13], donors [14–16], quantum dots [17,18],
and superconducting qubits [19–23]. Recent developments
of high-fidelity midcircuit measurements and resets of
superconducting qubits have enabled the preparation and
repeated stabilization of logical states [24–26]; demonstra-
tions of such quantum memories with enhanced lifetimes
have been limited by, among other reasons, a combination
of gate and measurement cross-talk.
One way to mitigate cross-talk [27] is to reduce the

lattice connectivity [28,29]. Consequently, fault-tolerant
operations require intermediary qubits; such qubits can be
used to flag high-weight errors originating from low-weight
errors [30,31]. In certain QEC codes and lattice geometries,
flag qubits supply the information needed to extend the
effective distance of a QEC code up to its intended distance,
and thus enable maximal efficiency at detecting and
correcting errors [32].
We demonstrated repeated error detection and correction

of a ⟦4; 1; 2⟧ error-detecting topological stabilizer code on
a heavy-hexagonal (HH) device designed to mitigate the
limiting effects of cross-talk using flag qubits (Fig. 1). The
combination of fast readout with reduced qubit connectivity
improved, after postselecting on instances in which no

errors were detected, logical errors per round when com-
pared to the physical measurement error rate. A thorough
analysis of this code led us to introduce a partial post-
selection scheme allowing us to discard ten times less data
for comparing matching decoding algorithms. Compared
against previously known decoding strategies on the entire
dataset, we found that a decoder performed best with
experimentally calibrated edge weights that account for the
correlations between syndromes; we show that the com-
putational cost of calibrating such a decoder scales linearly
with the size of the syndrome extraction circuit for
topological codes due to the local nature of the parity
checks, and thus can be extended to larger distance codes
even without any postselection. Furthermore, we showed
that correlations between five or more syndromes can be
eliminated by the application of a “deflagging” procedure.
The minimal impact of deflagging on logical errors is an
encouraging sign that this technique, and its extension to
general flag-based codes, is a viable way to process flag
outcomes in practice.
Theory of correlation analysis, decoding, deflagging,

and postselection.—Active error correction involves decod-
ing, using syndrome measurements, the errors that occurred
in the circuit so that the proper corrections can be applied.
We define error-sensitive events to be linear combinations
of syndrome measurement bits that, in an ideal circuit,
would be zero. Thus, a nonzero error-sensitive event
indicates some error has occurred. For the HH code, there
are two types of error-sensitive events defined as: (1) the
difference of two subsequent measurements of the same
stabilizer and (2) flag qubit measurements.
Error-sensitive events are depicted as nodes in a decod-

ing graph with edges representing errors that are detected
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by both events at their end points [Fig. 2(a) and [33] ]. If the
probability an edge occurs is P, then the edge is given
weight log½ð1 − PÞ=P�. The decoding graph may also have
a boundary node, so that an error detected by just one error-
sensitive event can be represented as an edge from that
event to the boundary node. In practice, there are also errors
detected by more than two error-sensitive events that could
be represented as hyperedges in a more general decoding
hypergraph.
Given a set of nonzero error-sensitive events, minimum-

weight perfect-matching (MWPM) finds paths of edges
connecting pairs of those events with minimum total
weight, and is a simple and effective decoding algorithm
for a topological stabilizer code that only operates on a
decoding graph [42], as opposed to a decoding hyper-
graph. While MWPM is computationally efficient, the
analogous matching algorithm on a hypergraph is not,
which limits the practicality of a decoding hypergraph.

The effectiveness of MWPM depends crucially on edge
weights in the decoding graph. We explored three strategies
for setting these edge weights: (1) In the uniform approach,
all edge weights were identical. (2) In the analytical
approach, edge weights were individually calculated in
terms of Pauli error rate parameters ρj, where the index j
indicates one of the six errors being considered: CNOT
gates, single-qubit gates, idle locations, initialization,
resets, and measurements. The numerical values of the

(b)

(a)

FIG. 2. (Color) (a) Decoder graph for the code layout depicted
in Fig. 1(b). Syndrome measurements from weight-four (2) sta-
bilizers are mapped to the pink (blue) nodes, and the weight-two
flag measurements are mapped onto the white nodes. Identical to
Fig. 1, “0,2” (“1,3”) denotes the left- (right-) hand side of the
code layout, with the colors of the circuits and syndrome
measurement matching in both figures. For initial j − =þiL states
stabilized by the circuit in Fig. 1(c), there are three different
possible size-four hyperedges within each round, each high-
lighted in dark blue across three consecutive rounds. The
boundary nodes in black have, by definition, edges with weight
“0” connecting them; rendering all boundary nodes to be
effectively a single node for the purposes of the decoding process.
(b) Applying the technique introduced in the main text to the
experiment in Fig. 1(c), we estimated the correlation probabilities
for all of the hyperedges shown in (a). The probabilities are sorted
from largest to smallest based on the results from a least-squares
fit using a six-parameter noise model. Points with darker colors
represent hyperedges of greater sizes, as shown in the lower half
of the plot. Hyperedges with indices greater than 93 (shaded gray)
had no analytical expression, but were still experimentally
adjusted to quantify the impact of computational leakage. The
result of fitting the six-parameter noise model (fit, pink dash)
agreed well with the analytical (red dash) curve generated using
noise terms from simultaneous randomized benchmarking [33].

(a)

(c)

(b)

FIG. 1. (Color) (a) Experiments were performed on ibmq_
kolkata, which had 27 qubits connected in a heavy hexagon (HH)
topology. The seven qubits used for the ⟦4; 1; 2⟧ code are colored
yellow, blue, and pink. (b) The code layout indicates a single
weight-four, X stabilizer (pink), and two weight-two, Z stabilizers
(blue) on the four data qubits (yellow) labeled di for integers “i”
from 0 to 3. For the weight-two stabilizers, superscripts “0,2”
(“1,3”) indicate the data qubits on which they operate. The
reduced connectivity of the graph is addressed by flag qubits
(blue) alternating between (i) being used as weight-two stabi-
lizers, and (ii) as intermediary qubits used to detect errors on the
center, syndrome qubit (pink). (c) Circuit diagram for the code
layout in (b) applied to an initial j−iL logical state with repeated
X- (pink), flag (white), and Z-check (blue) stabilizer measure-
ments, together comprising a round, with midcircuit reset
operations (“0”) applied between rounds. In this illustration,
the final measurement measures the four data qubits in the
X basis due to the application of Hadamard gates.
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parameters ρj can be chosen in several ways as discussed in
the next section on logical error measurements and
decoding. (3) In the correlation approach, we analyzed
experimental data to determine a set of edge probabilities
that are likely to have produced it. This approach involved
first calculating the probabilities for all hyperedges in the
decoding hypergraph before determining the edge proba-
bilities used in the decoder graph. Importantly, this
calibrated decoder graph, informed by the experimentally
estimated hyperedge probabilities, can be used for any
fault-tolerant protocol, and is not limited to the HH code or
when postselection is employed.
The key idea of the estimation protocol is as follows: a

hyperedge in the decoding hypergraph represents any of a
number of Pauli faults in the circuit that are indistinguish-
able from one another because they each lead to the same
set of nonzero error-sensitive events. If several faults occur
together, the symmetric difference of their hyperedges is
denoted S, the syndrome, or, in other words, the set of
nonzero error-sensitive events that is observed. The prob-
ability that we observe a particular S is the probability
that hyperedges occur in combination to produce S.
Since this is related to the probability αh of an individual
hyperedge h occurring, we can learn αh from many
observations of S.
Realistically, the possible hyperedges are limited in size

jhj by locality of the circuits. In the ⟦4; 1; 2⟧ code, we
found that hyperedges are limited to sizes four or less.
Finding αh in practical time begins by considering local
clusters and then adjusting local estimates recursively from
size-four hyperedges down to size one and two (Fig. 2 and
[33]). Only size-one and -two edges are required for
MWPM, but ignoring larger hyperedges can result in
nonphysical, negative size-one correlations. Another way
we explored decoding strategies was to consider analyzing
only a subset of all data. By Pauli tracing, we classified
edges in the decoding graph into three categories depend-
ing on whether its inclusion in the minimum-weight
matching necessitated (1) flipping the logical measurement,
(2) not flipping the logical measurement, or (3) is ambigu-
ous [33]. The ambiguous case occurs specifically for error-
detecting codes, like the ⟦4; 1; 2⟧ code presented here,
because some errors result in the decoder having to choose
between two equally probable corrections.
Using these classifications for edges in the decoder

graph, we explored three degrees of postselection. The
most conservative approach, using full postselection,
involved discarding all results showing any nonzero
error-sensitive event; this approach was the only one in
which further decoding cannot be done. In the opposite
regime, without postselection, all results were kept and any
ambiguous edges in the MWPM were treated without
flipping the logical measurement; here, logical error rates
could have been improved by decoding but was not strictly
needed. Finally, the intermediate regime involved a partial

postselection scheme whereby results were only discarded
if the MWPM algorithm highlighted an ambiguous edge;
here, decoding had to be done so that results with
ambiguous edges that were highlighted could be discarded.
Logical error measurements and decoding.—Fitting the

adjusted hyperedge probabilities to analytical expressions
produces approximate estimates for the six-noise parame-
ters in the error correcting experiments [Fig. 2(b)]. These
noise estimates were found to be in good agreement with
benchmarks based on simultaneous randomized bench-
marking. Experiments were performed on four logical
states (j − =þiL and j0=1iL) each of which was stabilized
up to ten rounds to extract a logical error per round of
stabilizers (Fig. 3). This logical error varied depending on
the analysis method.
For the full postselection scheme, the logical error for

some rounds fell below the best and average physical
initialization and measurement errors—a hallmark of being
below a so-called pseudothreshold for fault-tolerant quan-
tum computing. Fitting the decay curves resulted in
inferred logical errors per round of 6.4� 1.3 × 10−4 for
j − =þiL, and 11� 1 × 10−4 for j0=1iL.
If none of the instances of the experiment were dis-

carded, then the logical error remained consistently above
the pseudothreshold. In this analysis without any post-
selection and without decoding, we inferred logical errors
per round of 40.4� 0.2 × 10−3 for j − =þiL, and 102�
2 × 10−3 for j0=1iL.

FIG. 3. (Color) (top) Fraction of total results used for the logical
states [(a) j0iL, (b) j−iL] as the number of stabilizer rounds were
repeated from 0 to 10 times when full (blue squares), none
(yellow circles), or partial (gray triangles) postselection analysis
was used. For partial postselection, the analytical decoder was
used to exclude ambiguous shots. (bottom) The corresponding
logical errors versus number of rounds. The dashed red lines
indicate the pseudothreshold as determined by the best (average)
physical measurement errors of 7 × 10−3 (7.7 × 10−3).
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Recalling that the ⟦4; 1; 2⟧ is an error detecting code, we
used the syndrome outcomes from each stabilizer round to
perform a postfacto logical correction in software.
Discarding instances where ambiguous edges were high-
lighted by the decoder allowed us to apply the partial, in
contrast with the full, postselection scheme. With this
scheme, significantly more instances of the experimental
runs remained, resulting in inferred logical errors per round
of 10.7� 0.7 × 10−3 for j − =þiL, and 6.2� 0.3 × 10−3

for j0=1iL.
Within the none and partial postselection schemes, we

were able to compare the performance of three different
instances of decoders (Fig. 4). The most generic decoder
assumes there was no known noise model for the underlying
physical system. Such a uniform decoder graph, in which
every edge of the decoder graphwas given equal weight, was
expected to perform better than no decoding at all; but, was
expected to beworse than any other graphwhose edges were
informed by some knowledge of the underlying noise. For
instance, by selecting a simple, Pauli noise model, analytical
expressions for the edge weights were calculated and led to
improved logical error rates. Alternatively, if no assumptions
were made about the noise, then edge weights were popu-
lated by the experimentally calibrated, correlation probabil-
ities described earlier. We found that, as expected, such a
correlation decoder graph indeed corrected for logical errors
more effectively than the uniform decoding strategy and
compared well with the analytical method [Fig. 4(b)].
However, when the partial postselection scheme was used,
this trend no longer held since an analytical decoder with
noise parameters from simultaneous randomized bench-
marking outperformed the correlation analysis [Fig. 4(c)].
While the correlation analysis should, in principle,

contain complete information about all of the noise in
our experiments, its implementation is expected to become

more computationally costly when applied to codes at
larger distances. We simplified the decoder graph and thus
the number and size of hyperedges needed in the corre-
lation analysis, by feeding-forward information from each
round of flag measurements. This procedure, known as
“deflagging” [33], allowed us to eliminate all 30 of the size-
four hyperedges in an experiment with ten rounds of
stabilizer measurements without a significant increase in
the logical error per round (Fig. 4). Furthermore, the logical
errors were mostly preserved compared to results without
the deflagging procedure.
Naïvely extending the HH code to distance-three would

result in size-five hyperedges arising in the decoder hyper-
graph. However, when deflagging is applied, we found that
there were no longer any size-five hyperedges, and the
number of size-four hyperedges reduced from 148r − 12 to
60r − 12, where r ≥ 1 is the number of rounds. Since the
computational resources scale exponentially with the larg-
est weight hyperedge in a graph, we expect that the
deflagging procedure will provide a dramatic reduction
in the computational resources needed to carry out the
correlation analysis for codes beyond distance-three.
Conclusions.—Experimentally preparing and repeatedly

stabilizing a logical quantum state, with error rates nearly
ten times smaller than the lowest physical measurement
error rate, is an important step towards executing larger,
fault-tolerant circuits. The hexagonal lattice on which
we demonstrated our findings can be extended to operate
larger distance versions of the fault-tolerant HH code used
here, for related codes [43–45], or even other codes using
additional, bosonic degrees of freedom [46,47]. Although
the distance-2 version was implemented on a subset of
qubits within a hexagonal lattice, other topologies are also
expected to benefit; for example, a heavy-square topology
akin to the rotated surface code with added flag qubits [32]

(a) (b) (c)

FIG. 4. (Color) Logical errors per round initially in j − =þiL states under various analysis methods with acceptance probability per
round labeled above. Results varied depending on whether the flag events were directly used for decoding (flag) or indirectly used for
decoding using a deflagging procedure. (a) Logical error per round for full and none postselection methods. 25.5% of the counts were
rejected with each round for the full postselection scheme. (b) Comparison between errors using three decoder graphs on data without
postselection. (c) Comparison between errors using three decoder graphs on data with partial postselection. The approximate percentage
of counts rejected for each stabilizer round are indicated above each bar.
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or for distance-three demonstrations of the widely studied
surface code [48,49]. Nevertheless, our probabilistic error
correction methods and higher order error correlation
analysis represents an approach for improving decoders
for codes with or without flags within any device topology.
We also demonstrated an effective use of flags to limit the
extent of the correlations needed for efficient decoding. Our
approach for extracting quantitative noise figures from the
experiments creates a path to diagnose and reduce the
logical errors per round of codes at larger distances.
As quantum computing devices become larger and less

noisy, approaches such as ours may form the basis for
efficiently decoding experimentally relevant errors. Other
decoding strategies such as maximum-likelihood algorithms
are known to scale unfavorably with code distances but may
also benefit fromour approach [50–52]. Eventually, decoders
will need to be trained in real time [53], whereby logical
operations could be interleaved with calibration circuits to
periodically update the decoder graph’s prior information
with calibrated correlation probabilities. Previously studied
bootstrapping techniques [26] coupled with the periodic
recalibration of the correlation edges may eventually
approach near-optimal decoding efficiencies, although the
existence of an optimal strategy remains an open question.
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