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In 1957 Feynman suggested that the quantum or classical character of gravity may be assessed by testing
the gravitational interaction due to source masses in superposition. However, in all proposed experimental
realizations using matter-wave interferometry, the extreme weakness of this interaction requires pure initial
states with extreme squeezing to achieve measurable effects of nonclassical interaction for reasonable
experiment durations. In practice, the systems that can be prepared in such nonclassical states are limited to
small masses, which in turn limits the strength of their interaction. Here we address this key challenge—the
weakness of gravitational interaction—by using a massive body as an amplifying mediator of gravitational
interaction between two test systems. Our analysis shows that this results in an effective interaction
between the two test systems that grows with the mass of the mediator, is independent of its initial state and,
therefore, its temperature. This greatly reduces the requirement on the mass and degree of delocalization of
the test systems and, while still highly challenging, brings experiments on gravitational source masses a
step closer to reality.
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Introduction.—In a discussion regarding the necessity of
gravitational quantization at the 1957 Chapel Hill Conference
on the Role of Gravitation in Physics, Richard Feynman,
aiming to clarify a point made by Frederik Belinfante,
presented a Gedanken experiment in which a coherent
superposition of a massive particle in two different spatial
locations, generated, e.g., by a particle in a coherent super-
position of spin states entering a Stern-Gerlach apparatus, is
allowed to interact gravitationally with another mass [1]. He
pointed out that the two possibilities for treating the gravi-
tational interaction, either via a classical or via a quantum
field, result in very different quantum states and thus
experimental outcomes. Notably, the particles would, respec-
tively, emerge in a classically correlated mixture of different
positions or in a coherent superposition. The latter case is, in
modern quantum information parlance, referred to as an
entangled state.
At the time, such a Gedanken experiment was extraor-

dinarily far removed from the experimental technology of
the day. After all, it was only in 1952 that Schrödinger wrote
“... we never experiment with just one electron or atom or
(small) molecule. In thought experiments, we sometimes
assume that we do; this invariably entails ridiculous conse-
quences [...] we are not experimenting with single particles,
any more than we can raise Ichthyosauria in the zoo” [2].
Owing to this evident technological gap, there has been little
activity by experiment and theory to explore possible routes
towards turning Feynman’s Gedanken experiment into
reality.
However, six decades later, the rise of advanced quantum

technologies and, notably, the field of optomechanics is
starting to change this perception. The increasing ability to

bring particles of ever growing mass into the quantum
regime and control their dynamics in a manner that leaves
their coherences intact [3–13] suggests that today such an
experiment may be conceivable albeit still extraordinarily
challenging [14]. Indeed, by determining experimentally the
entanglement gain between two gravitationally interacting
parties one would be able to falsify the assumption of a
classical force carrier and thereby conclude the nonclassical
nature of the gravitational field between them [15,16].
This led to further proposals for experiments that probe
for gravitationally induced entanglement [17–24] and add
to other tests based on superpositions of source masses
[25–29]. While these experiments might become feasible at
some point, it is equally clear that remarkably stringent
requirements on isolation from the environment, the required
duration of these experiments, and the large spatial extent of
the quantum superpositions that are required to achieve a
measurable effect render such type of experiment extremely
challenging indeed [22].
In this Letter, we show that by introducing a heavier

mediator particle that interacts gravitationally with a smaller
test mass and by some other stronger force with an ancillary
quantum system, an effective interaction between the test
mass and the ancillary system can be engineered, which
grows with the mass and degree of delocalization of the
mediator. Notably, at suitably chosen points in time, the
mediator decorrelates from the system, leaving only the test
mass and the ancillary system entangled. As a result we find
that a light test mass can be made to interact with an ancillary
system as if it had the much larger mass of the mediator, with
the significant benefit that the heavier mass of the mediator
need not be prepared in a pure state and can, thus, remain at a
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finite temperature. Since a key technological challenge
resides in the difficulty of preparing a sufficiently heavy
mass in a pure state with a large enough spatial extension, the
setup described here represents a significant enhancement
over existing proposals.
Concept and setup.—For the calculations in this Letter,

we will assume a gravitational interaction strength that is
determined by the Newtonian interaction energy, which for
two bodies of mass m with their centers of mass (c.m.)
located at positions x1 and x2 is given by EG ¼ −Gm2=
jx1 − x2j. Expanding this for small variations of jx1 − x2j
around a fixed separation distance d, we find that the lowest-
order coupling term is linear in the positions of the two
masses and has the form Gm2x1x2=d3. Under such an
interaction the c.m. of the two particles entangle at a rate that
grows with the extent of their spatial delocalization
[15,17,20,22–24,27]. While this describes gravity as a direct
interaction, ignoring any field degree of freedom that may
mediate the force, it allows for the computation of the
attainable amount of entanglement, the presence of which
may then allow us to draw inferences regarding the classical
or quantum character of gravitational interaction and the
field that may be mediating it.
For two masses that are trapped in local harmonic

potentials and cooled down to their motional ground states
(GS), the amount of entanglement due to their gravitational
interaction, as quantified by the logarithmic negativity [30],
oscillates in time with its maximum given by η ¼
2Gm=ðω2d3Þ at time t ¼ π=½ð1 − ηÞ2ω� [20]. To ensure
that the gravitational interaction dominates over Casimir
forces, the surface-to-surface distance between the interact-
ing bodies must be kept above a certain threshold determined
by the radii of the particles. Interestingly, for large particles,
when the separation distance is dominated by their size,
η becomes independent of the particle size. This appears to
be a strong limitation, as the gravitational interaction is
naturally minute, and it seems the amount of entanglement
that it can generate cannot be enhanced above a certain
threshold even if we would acquire the ability to cool down
objects of larger size [31]. Oneway to avoid this limitation is
to increase the spatial extent of the c.m. wave functions
above that of their GSs, for example, by squeezing them
[20,22–24] or by placing each system in a superposition
of two spatially separated coherent states [17,22]. However,
the entanglement generated will be extremely sensitive to
the tiniest decoherence sources of the involved systems
[22,32–34] and, in general, this sensitivity will grow with
increasing delocalization of the system [22,23]. Therefore,
the challenge for the observation of gravitationally induced
entanglement resides in the ability to generate highly non-
localized states of massive objects whose purity needs to be
maintained over the duration of the protocol. This is a
phenomenal technological challenge that increases with the
size of the objects. In the remainder of this Letter, we
introduce and analyze a setup where the requirement of

having a heavy mass in a highly delocalized state is not
imposed on the test masses that we want to entangle but is
instead shifted onto a third system that serves to mediate
their interaction. While the test systems require their
preparation in suitable pure states, the mediator can take
any pure or mixed state, and the effective interaction between
the test systems can be enhanced by increasing the size of the
mediator instead of that of the test systems themselves.
Consider the setup depicted in Fig. 1 consisting of three

interacting systems, A, B, and C. We denote system A as a
two-level test mass (TLTM), i.e., it is a particle of mass ma
trapped in a double-well potential along dimension X and
behaves as a two-level system with states jLi and jRi, which
correspond to the particle being located, respectively, in the
left or in the right well. We assume that the wells are deep
and far enough to make any tunneling term negligible, and
thus, that states jLi and jRi can be treated as stationary states
of the double well for the duration of the protocol. System B
is an ancillary qubit (AQ) system, which may have the same
or a different physical origin as system A [35,36]. We stress
that the argument that we will put forward is independent of
the precise physical nature of system B. Finally, C is a
mediator particle of massmc trapped in a harmonic potential

FIG. 1. Setup: A test particle (system A) of radius r and mass
ma is subject to a double-well potential with wells separated by a
distance d0 and behaves as a two-level system with states jLi and
jRi, which are stationary for the duration of the experiment
provided that d0 is large enough to make any tunneling
negligible. A massive oscillator (system C) with frequency ω,
radius R, and mass mc has its equilibrium position at a distance d
from the center of the double-well potential and acts as a mediator
between the test mass and an ancillary qubit (system B) that has
states j0i and j1i and bare energy splitting ω0. The mediator is
weakly coupled to the test mass through gravitational interaction
with energy V̂aðX̂Þ depending on the position of the oscillator,
and strongly coupled to the ancillary system with a much stronger
interaction energy V̂bðX̂Þ of a nature other than gravitational, e.g.,
Casimir force. The direct interaction between systems A and B is
negligible.
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characterized by an oscillation frequency ω in the X
direction, and we assume that its motion in this dimension
is uncoupled from its motion in orthogonal dimensions. A
similar setup, albeit without system B, has been considered
in Refs. [37,38]. Here, we assume that system C interacts
with both A and B, while the interaction between the latter
can be neglected. Under this assumption, the setup is well
described by a Hamiltonian of the form

Ĥ ¼ ℏω0σ̂
z
b þ

1

2mc
P̂2 þ 1

2
mcω

2X̂2 þ
X
α¼L;R

V̂a;αðX̂Þjαihαj

þ
X
α¼0;1

V̂b;αðX̂Þjαihαj; ð1Þ

where X̂ and P̂ are, respectively, the position and momentum
operators of the mediator, and σ̂zb is the Pauli z operator
acting on system B, with ω0 giving its bare energy splitting.
The terms V̂i;α, with i ¼ fa; bg, represent the interaction
energy between system C and system i when the latter is in
state α and are assumed to be a function of the position of the
mediator. We are interested in the case where V̂a;α is purely
of gravitational origin, while V̂b;α ≫ V̂a;α and, although
typically not of gravitational origin, its specific physical
origin is not relevant for the argument. In order to avoid the
interaction between A and C being dominated by Casimir
forces, the distance between these masses needs to be
sufficiently large—the precise value depending on their
masses—typically exceeding significantly the splitting d0
of the double-well potential [39]. Hence, we can expand the
gravitational potential to second order in the separation
distance around the value d to find an interaction energy

V̂a;�ðX̂Þ ¼ −
Gmamc

jd ∓ d0
2
þ X̂j

≈ −
Gmamc

d

�
1þ d20

4d2
� d0
2d

−
�
1� d0

d

�
X̂
d
þ X̂2

d2
þ � � �

�
; ð2Þ

where V̂a;þ and V̂a;− correspond, respectively, to V̂a;R and
V̂a;L, and G ¼ 6.67408 × 10−11 m3 kg−1 s−2 is the gravita-
tional constant. The first two terms in the expansion
introduce a global energy shift, the third gives an energy
splitting of the TLTM, while the fourth term is responsible
for a displacement of the oscillator equilibrium position and
as well as for a linear interaction between mediator and the
TLTM. Finally, the fifth term generates a shift in the
oscillation frequency of the oscillator. Thus, putting every-
thing together, Hamiltonian (1) can be rewritten as

Ĥ¼ ℏωaσ̂
z
aþℏωbσ̂

z
bþℏω̃â†âþℏðgaσ̂az þ gbσ̂bzÞðâþ â†Þ;

ð3Þ

provided that the interaction energy between systems C and
B admits a similar expansion, and that j � d0=2 − Δxj ≪ d,
with Δx denoting the maximum value of the position
uncertainty of the oscillator during its evolution. Here, â†

and â are ladder operators of the harmonic oscillator C with

modified frequency ω̃2 ¼ ω2 − ð2Gma=d3Þ þ ð2=mcÞVð2Þ
b ,

where Vð2Þ
b is the coefficient of the term quadratic in X̂ in the

interaction between C and B. Furthermore, ωa ¼
Gmamcd0=ð2ℏd2Þ and ga ¼ −ðGmad0=d3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc=ð2ω̃ℏÞ

p
,

upon defining σaz ¼ jLihLj − jRihRj; and ωb and gb have
similar expressions in terms of the specific interaction
between B and C.
Dynamics and entanglement.—The unitary-evolution

operator associated to Hamiltonian (3) can be conveniently
expressed in the interaction picture as [39]

ÛðtÞ ¼ exp

�
ðgaσ̂az þ gbσ̂bzÞð−âαt þ â†α�t Þ

�

× exp

�
−i

2gagb
ω̃

σ̂az σ̂
b
z

�
t −

sin ω̃t
ω̃

��
; ð4Þ

with αt ¼ ½ðe−iω̃t − 1Þ=ω̃�. The first term generates a time-
dependent displacement of the mediator in phase space
conditional on the states of the TLTM and the AQ. The
second term gives a second order interaction between the two
lateral systems with an effective coupling geff ¼ 2gagb=ω̃.
Remarkably, at times tn ¼ 2πn=ω̃ that are a natural period of
the mediator frequency, αtn ¼ 0 and the first term vanishes,
leaving an effective interaction between the TLTM and the
AQ which is independent of the state of the oscillator, with
ÛðtnÞ ¼ expf−igeff σ̂az σ̂bz tng. Therefore, at these points in
time the mediator is decorrelated from the rest of the system,
while entanglement is retained between the TLTM and the
AQ. Thus, provided that the TLTM and the AQ are initialized
in suitable states, and that the gravitational interaction is able
to mediate quantum correlations, entanglement will grow
between the TLTM and AQ. This entanglement can then be
detected by standard methods making local measurements on
the 2-qubit system [40,41]. The principle that gives rise to the
interaction is the same as that of the phase gates employed in
trapped-ion platforms to entangle their internal degrees of
freedom mediated by their collective motion [42–45]. Here,
we use it as an amplification mechanism of the gravitational
interaction. Notice, that the interaction strength between the
TLTM and the AQ grows with the mass of the mediator asffiffiffiffiffiffi
mc

p
and can be enhanced by a factor gb=ω over the strength

of the gravitational interaction ga. The latter occurs because
during the evolution the mediator will be displaced in phase
space in opposite directions conditionally on the states of the
TLTM and AQ, with this displacements reaching values of
ðga þ gbÞ=ω̃, see Fig. 2(a). Thus, with increasing coupling of
the AQ to the mediator, this grows into states with larger
spatial delocalization, which in turn enhance the interaction
between the TLTM and the mediator.
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In practice, the tolerable delocalization of the mediator
will be limited by the distance that preserves the linear
approximation in the expansion of the gravitational potential
that we did in Eq. (2); that is Δx ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mω̃Þp ffiffiffiffiffiffiffihn̄ip

≪ d,
where Δx and hn̄i correspond, respectively, to the maximum
values of the position uncertainty and the mean phonon

occupation number of the mediator during the evolution. The
time-dependent phonon occupation number hnit can be
exactly calculated for an initial state with the TLTM and
the AQ in even superpositions of the type ðjL=0i þ
jR=1iÞ= ffiffiffi

2
p

and the mediator in a thermal state with mean
phonon occupation number n̄0. It is given by

hnit ¼ n̄0 þ 4
g2a þ g2b
ω̃2

sin2
ω̃t
2
: ð5Þ

This sets a limit on the strength of the coupling of the AQ to
the mediator

gb=ω̃ ≈
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mcω̃Δ2

x

ℏ
− n̄0

r
≪

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mcω̃d2

ℏ
− n̄0

r
; ð6Þ

where we have assumed gb ≫ ga. We now consider the
entanglement dynamics between the TLTM and the AQ,
which we quantify in terms of the logarithmic negativity
LN ¼ max ð0; log2kρTb

abk1Þ, with k · k1 the trace norm and
where Tb represents the partial transpose with respect to
subsystem B. For a closed system ruled by Hamiltonian (3)
an exact expression can be found at the times when the
mediator is decoupled from the system:

LNðtnÞ ¼ maxf0; log2½1þ j sinðϕmÞj�g; ð7Þ

with

ϕm ¼ 4gbga
ω̃

tn ≈
2Gmcma

ℏd3
Δxd0tn; ð8Þ

where we have assumed for simplicity that n0 ¼ 0. This
expression is upper bounded due to the constraint Δx ≪ d.
In Fig. 2(b) we show the dynamics of entanglement
between the different subsystems, for various temperatures
of the mediator. We see that when the mediator starts in the
GS the logarithmic negativity between the TLTM and the
mediator oscillates with the period of the mediator fre-
quency and vanishes completely at times tn. At these times
the mediator is decoupled while the entanglement between
the TLTM and the AQ reaches a maximum. While the
logarithmic negativity between themediator and the TLTM
decreases with increasing temperature, the entanglement
between the TLTM and the AQ at the rephasing times tn
remains unaffected. This is observed in the form of peaks
centered at positions tn, which get narrower with increasing
temperature of the mediator. In Fig. 2(c) we illustrate the
enhancement of the entanglement between the TLTM and
the AQ as the coupling of the AQ to the mediator is
increased. We observe that with increasing coupling
strength the peaks of entanglement between the TLTM
and the AQ become higher and narrower.
To understand the degree of amplification that such a setup

can introduce, we compare it to the case without a mediator.

(a)

(b)

(c)

FIG. 2. System dynamics: In (a) we show the evolution in phase
space of the four components of the mediator state correlated with
each of the four states of the TLTM and the AQ. Here, fhx̂i; hp̂ig
are dimensionless position and momentum quadratures of the
redefined oscillator, with shifted frequency and displaced equilib-
rium position. (b) The evolution of the entanglement, as quantified
by the logarithmic negativity, between the TLTM and the AQ
in continuous lines and between the TLTM and the mediator
in dashed lines, for different temperatures of the mediator. Here,
ga ¼ 1=48ω̃ and gb ¼ ω̃. Continuous lines in (c) display the
entanglement between the TLTM and the AQ for different values
of the coupling gb expressed in units of ω̃. For this simulation we
initialize the mediator in a thermal state with mean phonon
occupation hni0 ¼ 10, and set ga as in (b). Dots indicate the
value of the entanglement at the decoupling times tn. Dashed lines
correspond to the evolution of entanglement between two generic
qubits governed by Ĥ ¼ ð2gagb=ω̃Þσ̂zσ̂z, which at times tn has a
unitary-evolution operator equivalent to that of the full-system
Hamiltonian, see Eq. (4).
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Weconsider two gravitationally interactingTLTMs separated
by a distance D, whose double-well potentials have a
separation d0. For the setup featuring a mediator we consider
a TLTM with the same separation distance d0, located a
distance d away from the mediator. The distance d will in
general be larger thanD by an amount given by the difference
between the radii of the mediator,R, and the TLTM, r, that is
d ¼ Dþ ΔR − d0=2þ Δx=2, withΔR ¼ R − r. In thisway
we make sure that the distances between the surfaces of the
gravitationally interacting bodies is the same in both setups,
and thus avoid the appearance of Casimir-Polder forces
between the mediator and the TLTM. We find that in the
case of two directly interacting TLTMs the logarithmic
negativity evolves as in Eq. (7) with the argument of the
sine given by [39]

ϕd ¼
Gm2

a

ℏD
ðd0=DÞ2t

1 − ðd0=DÞ2 : ð9Þ

Thus, the enhancement of the mediated setup over the setup
with directly interacting masses can be expressed as the ratio

ϕm=ϕd ¼ 2
mcΔx

mad0

1

ð1þ ΔR
D Þ3 ; ð10Þ

where we have assumed d0=D ≪ 1. To quantitatively
illustrate such an enhancement we examine the following
example. Consider a particle of silica with radius
r ¼ 70 nm (recently, particles of this size have been placed
in their motional GS [9,46]) in a double-well potential with
d0 ¼ 500 nm. If we impose that the gravitational inter-
action energy has to exceed the Casimir interaction energy
by a factor of 10, we find that the minimum distance
between their surfaces must be kept above 166 μm. This
holds for all silica particles with radii below 166 μm [39].
Thus, we fix D ¼ 166 μm and consider a mediator with a
radius that is α times lager than that of the TLTM, that is
R ¼ αr. Assuming a frequency for the mediator of
ω̃ ¼ 100 Hz, and that both mediator and TLTM are silica
particles, with mass density ρ ≈ 2400 Kg=m3, this gives an
enhancement of

ϕm=ϕd ≈
ffiffiffiffiffi
α3

p

½1þ ðα − 1Þ4 × 10−4�3 10
−3 gb

ω̃
; ð11Þ

Thus, we see that, for example, amediator particle of radius
R ¼ 7 μm, corresponding to α ¼ 100, would provide an
enhancement on the order of ϕm=ϕd ≈ gb=ω̃ ≪ 108, where
the upper bound is imposed by the relation in Eq. (6).
Conclusion.—The detection of gravitationally mediated

entanglement would represent a remarkable experimental
result with far-reaching consequences for our understanding
of physics. Although this is an outstanding technological
challenge that will require the quantum control of heavier and
heavier systems, rapid developments and recent experimental

breakthroughs in the field of optomechanics suggest that the
consideration of this question is pertinent and timely. In this
spirit, we propose an enhancement of the experimental design
with respect to existing proposals, which rely on the direct
gravitational interaction between heavy test masses. In our
design, we shift the large mass requirement to a mediator
system, while keeping the test systems, where the entangle-
ment is to be detected, at scales more friendly for their
quantum control. While these smaller test systems would not
show detectable amounts of entanglement were they to
interact directly, in themediated design they show an effective
interaction that grows with the mass of the mediator.
Remarkably, the required degree of controllability on the
heavymediatormass is considerably lower than that of the test
systems in the directly interacting case, such that themediator
can remain in a thermal state. This paves the way for
experimental tests of the gravitational interaction between
masses that are significantly larger than those that can be
prepared in pure states.
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