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The role of water in biological processes is studied in three reactions, namely, the Fe-CO bond
rupture in myoglobin, GB1 unfolding, and insulin dimer dissociation. We compute both internal and
external components of friction on relevant reaction coordinates. In all of the three cases, the cross-
correlation between forces from protein and water is found to be large and negative that serves to reduce
the total friction significantly, increase the calculated reaction rate, and weaken solvent viscosity
dependence. The computed force spectrum reveals bimodal 1=f noise, suggesting the use of a non-
Markovian rate theory.
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Despite the importance of water in biological activities
[1–3], our understanding of the microscopic manner by
which water influences biological processes remains
vague. Complex biochemical reactions such as folding,
dissociation, aggregation, and fibrillation of proteins are
deeply influenced by both water and protein motions
[4–7]. Frauenfelder et al. suggested that the motions of
proteins are “slaved” to the dynamics of water [8,9]. This
slaving mechanism could be mediated by a flow of energy
between protein and water, largely modulated by the side-
chain fluctuations and low dielectric constant of the
protein core [10]. Such processes require characterization
by multidimensional free energy landscapes [11–13]. The
ruggedness of such free energy landscapes are overcome
by internal protein fluctuations [14,15]. Best and co-
workers suggested that friction from internal protein
motions dominate the frictional resistance on such proc-
esses [4,5,15]. Several studies have observed a weak
viscosity dependence of the rate of these processes
[9,16–19], which has been rationalized in terms of protein
internal friction. Makarov and co-workers studied
internal friction in terms of the average reconfiguration
timescales of disordered and unfolded proteins and their
relations to solvent viscosity [18,20]. The low dielectric
constant of the protein interior [21] allows the long-range
electrostatic forces from water to influence even the
protein core [10].
In the present work, we study this coupling in

three separate proteins, namely, myoglobin, GB1, and
insulin dimer. A reaction coordinate is essential to
understand the energy landscape of a chemical process.
We use the formalism (and also the notation) of Oxtoby
and others in the context of vibrational energy relaxation
[22–25] where one expands the potential energy as a
function of the bond reaction coordinate, denoted by Q
[Eq. (1)].
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The reaction coordinate in the present study is also a
bond vector. In each of the three proteins, we focus on one
or more bonds (coordinate or hydrogen bonds) that need to
break for the proteins’ biological purposes. Thus, an
appropriate reaction coordinate is the bond length. The
specification of a bond requires positions of two atoms in
the three dimensional coordinate space where these bonds
are represented by vectors. For example, in myoglobin,
the bond is between the Fe and CO groups in the protein
[Fig. 1(a)]. Q, in this case is defined as a vector as in
Eq. (2).

Q ¼ BFe-CO ¼ rFe − rCO; ð2Þ

where, rFe and rCO refer to the positions of the Fe and the
CO groups, respectively. However, the scenario is different
in cases of GB1 [Fig. 1(b)] and insulin dimer [Fig. 1(c)].
In these cases, the interactions of concern are four hydrogen
bonds, the rupture of which are crucial for unfolding
[26–29] or dissociation [30–35] of the protein. The reaction
coordinate is defined by a sum over all the four bond
vectors (Bi, i ¼ 1, 4) as in Eq. (3).

Q ¼
X4
i¼1

Bi ¼
X4
i¼1

ðrDi
− rAi

Þ: ð3Þ

Here,D and A represent the hydrogen bond (HB) donor and
acceptor, respectively. To drive the dissociation process, the
individual forces acting on the two atoms (or groups of
atoms) that constitute the bonds must be oppositely directed.
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The motion of the bond is described by a generalized
Langevin equation [36] for the reaction coordinate Q.

μQ̈ðtÞ ¼ FðQÞ −
Z

t

0

dτζðτÞ _Qðt − τÞ þRðtÞ ð4Þ

where μ is the effective mass along the reaction coordinate
and FðQÞ is the systematic force due to bonding. The time
dependent friction (ζðtÞ) is related to the fluctuating force
FðtÞ through the fluctuation-dissipation theorem [37].

hRð0Þ ·RðtÞi ¼ 2dkBTζðtÞ : ð5Þ

Here, d defines the dimensionality of the system. Thus, the
friction can be obtained from the force-force time corre-
lation function. We calculate the forces experienced by
these atoms and add them (with the appropriate sign
reversal) to obtain the total force vector on the concerned
bonds which are held fixed. We next calculate the auto-
correlation function of the force fluctuations and use the
Kirkwood formula [38,39] to obtain the friction. We
execute this exercise separately for the effects of protein
and water on the bonds, which allows us to segregate the
contributions from these two domains and their cross-
correlation. Accordingly, the total friction experienced by
these bonds contains three contributions.

ζ ¼ ζP þ ζW þ ζcross : ð6Þ

In Eq. (6) the subscripts p and w refer to protein and water,
respectively, while cross represents the coupled term. The
origin of the individual friction terms [Eq. (6)] can be
realized by decomposing the total force (F) into contribu-
tions from protein and water [40]. To compare these friction
contributions individually, we introduce an auxiliary time-
dependent function ΞðtÞ [Eq. (7)], which is an integral over
the force autocorrelation function. In the limit t → ∞, this
reduces to the Kirkwood formula, which gives the value of
friction.

ΞðtÞ ¼ 1

3kBT

Z
t

0

dτhδFð0Þ · δFðτÞi;

ζ ¼ lim
t→∞

ΞðtÞ: ð7Þ

Here, kB is the Boltzmann constant and T is the temperature
of the system. A rigorous derivation of the Kirkwood
formula follows from Zwanzig’s projection operator tech-
nique [36,38]. The foremost requirement is that the space of
the dynamical variable in question should not be coupled
with the bath degrees of freedom. In the present case, it is
accomplished by fixing the coordinate space positions of
the bonds under investigation. This is a widely used
technique [24,51].
In Fig. 2 we show the temporal evolution of ΞðtÞ for the

contributions from protein internal friction (ζP) (red), water
external friction (ζW) (blue), and the cross term (ζcross)
(black), along with that of the total friction (ζ) (green).

FIG. 1. Pictorial description of the reaction coordinates in the
three systems studied in this work. (a) Fe-CO bond in the heme
unit of myoglobin, (b) hydrogen bonds (HBs) between parallel β
sheets in GB1, and (c) the junction HBs in insulin dimer. These
bonds vectors act as the reaction coordinates (black dashed lines)
in this study.

FIG. 2. Time evolution of the auxiliary function ΞðtÞ for
different contributions to the total friction experienced by
(a) Fe-CO bond in the heme unit of myoglobin, (b) HBs between
parallel β sheets in GB1, and (c) the junction HBs in insulin
dimer. Color code: red, contributions from protein; blue, from
water; and black, the cross term. The total response is represented
by the green color. The cross term contributes a huge negative
value, which brings down the value of total friction.
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For GB1 [Fig. 2(b)] and insulin dimer [Fig. 2(c)], the plots
are averaged over the four concerned hydrogen bonds in
each case. We obtain the zero-frequency friction by
extending the upper limit of integration to infinity. The
values thus obtained are given in Table I.
In all three cases, the protein internal friction

contributes the major fraction. However, the total cross
term is negative and comparable to the internal friction
(particularly in insulin dimer and GB1). This results
in a significant decrease in the total friction experienced
by the relevant reaction coordinate. It is to be noted that
the total cross-friction term is a summation of two
individual cross terms [40]. Thus ζcross, that acts as a
lubricant at these bonds, increases the rate of the dis-
sociation reaction. This appears to be a general feature in
all the systems.
To get an idea about the relaxation timescales, we must

study the force autocorrelation functions (FACF) separately
[40]. As discussed before, there are four terms (protein,
water, and two of their cross-correlation terms) that
contribute to the total force ACF. We separately compute
these contributions [40]. For the cross-correlation, the
relaxation is studied for the average of the two terms.
Most of these time correlation functions are found to show
multiexponential decay.
In insulin dimer and GB1 (for the forces on the relevant

hydrogen bonds), the relaxation of protein FACF is slower
than that of water. For the Fe-CO bond in myoglobin,
however, the scenario is different. Here, the protein con-
tribution of FACF shows an initial oscillatory decay, which
is faster than that of water. This oscillatory behavior is
translated into faster decay of the total FACF.
The value of the stretching frequency of the Fe-CO bond

is ∼1945 cm−1 [52]. At room temperature, this frequency
corresponds to a timescale of ∼16 fs. This corroborates
with the ultrafast solvation response observed by Fleming
and co-workers (∼20 fs) [53]. Hence, one can state that the
ultrafast solvent polarization fluctuations couples with the
Fe-CO bond vibration along with the vibrational modes of
the protein. The present calculation does not explicitly take
the quantum effects into account that might be important
for Fe-CO coordination. Although the inclusion of quan-
tum effects shall change the relative contributions, the trend
should remain the same.

The order of magnitude of the timescale components
varies from system to system. These are tabulated in [40].
The overall relaxation in GB1 is one order of magnitude
slower than that of insulin dimer. In all the proteins, we
observe a surprisingly dominant ultrafast component in
around ∼100 fs in the protein component which is similar
to the ultrafast solvation component well-known for
water [54]. There are certain intermediate-to-high fre-
quency normal modes in protein like internal hydrogen
bonds, or dihedral angle fluctuations. These vibrations can
combine to give rise to the ultrafast component [18,55].
But, they could also originate from the dynamical coupling
with water fluctuations.
The cross-TCF shows triexponential decay. The ampli-

tude of the cross-TCF is negative, as already mentioned.
This accelerates the relaxation of total FACF. Such accel-
eration of dynamical relaxation by a negatively cross-
correlated contribution has been previously reported in
several other cases [54]. The negative cross-correlation
function was extensively discussed in the context of ion
diffusion [56–58].
The anticorrelation is prominent when we look into the

temporal evolution of the fluctuations of the magnitude of
force contributions from protein and water. For the three
systems, this is shown in Fig. 3.
In Fig. 3, short time trajectories are shown for the forces

on the relevant bonds in the three proteins, as mentioned in
the figure. The anticorrelation is apparent in all of these

TABLE I. Values of friction obtained from the Kirkwood
formula for the three studied systems.

ζ × 109 (g s−1)
Contribution Myoglobin GB1 Insulin dimer

Protein 154.8 4.97 1.17
Water 22.0 3.66 0.34
Cross −64.2 −4.09 −1.33
Total 112.6 4.54 0.18

FIG. 3. Temporal evolution of the fluctuations in the magnitude
of the force on the relevant reaction coordinates in myoglobin,
GB1, and insulin dimer. The red color represents the force
contribution from protein and the blue color represents that from
water. These two contributions show pronounced anticorrelated
fluctuations in all three proteins. One short-time trajectory for
each of the systems is shown here. The green rectangles represent
the anticorrelation events.
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trajectories. Some of them are highlighted by green
rectangles. We observe a tug-of-war-like behavior between
the contributions of force from protein and water.
We perform Fourier transformation of the FACF to get

the spectral density of force. In Fig. 4 we plot this spectral
density for the total force on the relevant bonds in all three
systems (insulin dimer, GB1, and myoglobin, respectively).
If the spectral density can be fitted to the form SðfÞ ∝ 1=fα

(f ¼ frequency), it is known as 1=f noise. Besides several
natural phenomena, such noise has been reported for the
fluctuations of protein and water as well [59,60]. In
logarithmic representation, the slope of the linear curve
provides the value of α. Interestingly, the total force
spectrum exhibits bimodal 1=f noise characteristics, with
the two slopes α1 and α2.
The values of the slopes are given in Figs. 4(a)–4(c). We

observe a general trend that α1 < α2. The value of α2 shows
a minimum deviation from protein to protein, with an
average value around 0.9. The exponent α1, on the other
hand, ranges from 0.45 to 0.74. To understand the origin of
this bimodal 1=f noise, we calculate the force spectrum on
a fixed water-water hydrogen bond in bulk water from a
separate simulation. We find that this yields a spectrum
with a single slope having a value of 0.93 [Fig. 4(d)].
Hence, the high frequency steeper slope in the protein
systems (α2) has its origin in the fluctuations of water This
arises from the low dielectric constant of the protein interior

that allows a strong interaction between the bonds and the
water molecules. Since all of these bonds contain a certain
degree of dipolar character, they may couple strongly to
the polarization fluctuations of water. This is reflected in
the exponent being close to unity in the 1=f noise of the
force spectrum.
The slope at low frequency originates from the force

contribution of the protein itself. It is sensitive to the nature
of the protein. Hence it shows a large deviation from system
to system.
In order to calculate frictional effects on rate, we need the

frequency-dependent friction which is obtained by Laplace
transformation of the FACF, which exhibits both a fast and
a slow component. The fast component serves to reduce the
total friction but populates the high frequency part of the
power spectrum. The slow component enhances the zero
frequency friction. To understand the effects of the fric-
tional forces on the rates, we calculate the reaction rates
based on three reaction rate theories, namely Kramers
theory, Smoluchowski theory, and the more accurate
Grote-Hynes theory [39]. The effects of the bimodality
of frequency-dependent friction on the rate of a reaction can
be addressed only via a non-Markovian rate theory like
Grote-Hynes theory if we assume that the reaction surface
is one dimensional. However, comparison between the
three limits is instructive.
According to the Kramers theory, rate constant is given

by Eq. (8).

kKr ¼
1

ωb

��
ζ2

4
þ ω2

b

�
1=2

− ζ

2

�
kTST: ð8Þ

Here, ζ is the friction coefficient, ωb denotes the frequency
associated with the barrier, and kTST is the transition theory
rate constant. Here, we calculate the transmission coeffi-
cient defined as κ ¼ k=kTST, for all the three reaction
systems studied [40]. In the overdamped limit (known as
Smoluchowski limit), the transmission coefficient becomes
ωb=ζ. It is important to note that in Kramers’ theory, we
assume that the random forces are uncorrelated, and hence,
friction is frequency independent.
According to the non-Markovian Grote-Hynes theory,

the transmission coefficient is given by λr=ωb where
the reactive frequency λr is obtained by solving a self-
consistent equation [Eq. (9)].

λr ¼
ω2
b

λr þ ζ̂ðλrÞ
: ð9Þ

ζ̂ðλrÞ denotes the frequency-dependent friction and is
calculated by Laplace transformation of FACF. In the
calculation of this quantity, we need both the frequency-
dependent friction and the value of the barrier frequency.
Here, we assume ωb ¼ 8 ps−1. We vary this value between
5 and 12 ps−1, and confirm that the basic conclusions do

FIG. 4. Spectral density of the total force acting on the
concerned bonds in the three proteins: (a) myoglobin,
(b) GB1, and (c) insulin dimer. The spectra for all three systems
show bimodal 1=f noise. The values of the slopes are given along
the respective lines. The two distinct slopes originate because of
coupling between protein and water fluctuations. The high
frequency steeper slope (α2) originates from water fluctuations
[shown for neat water in (d)], while the low frequency one (α1) is
from protein, and depends on the nature of the protein.
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not change. This range of barrier frequencies is expected in
biochemical processes [39]. This also follows from our
earlier work on insulin dimer dissociation [61].
In all the three cases, friction is found to reduce the value

of the rate from the TST prediction significantly, revealing
the dynamical effects of friction. Additionally, memory
effects are found to play important role in determining the
transmission coefficient. Because of the presence of the
large ultrafast component in FACF, the reactions should be
categorized in the intermediate damping regime. This is
also borne out by the large difference in calculated rates
between the Markovian and non-Markovian limits.
The negative contribution of the protein-water cross term

can have an important consequence on the viscosity
dependence of the rate of the bond-breaking processes in
proteins. Here, the viscosity dependence will be determined
by a competition between the following factors: (i) the
barrier frequency, (ii) both the high and low frequency
components of the total friction. These factors together
determine the extent of damping of the reaction and hence
the viscosity dependence of the rate. The cross term that
is found to reduce the friction, both at high and low
frequencies, could change with solvent’s viscosity, in such
a way that the high-frequency contribution decreases,
which is reflected in the decrease of the rate. On the other
hand, if the barrier frequency increases (>10 ps−1), the
non-Markovian rate theory usually predicts weak viscosity
dependence, since the slower solvent modes cannot couple
to barrier crossing dynamics when driven at such a large
frequency.
We surmise that the present calculation might serve to

explain the experimental observation of weak viscosity
dependence. In proteins it is often attributed to the
dominant role of the internal friction. We offer a different
scenario. Not only the negative cross-correlation between
internal and external forces, but also the non-Markovian
effects could play an important role in weakening the
solvent viscosity dependence. This is akin to the break-
down of Kramers theory in isomerization reactions
well known in literature [62,63]. If the Smoluchowski
limit (SL) description were to be valid, we would expect a
1=η dependence of the reaction rate on viscosity (η).
However, the inadequacy of the SL implies a weaker
viscosity dependence, as was also observed earlier in the
breakdown of Kramers theory [62,63].
We present the important result that the forces acting on

these well-defined reaction coordinates derive contribu-
tions both from protein and water. These two exhibit
pronounced anticorrelated fluctuations with time. The total
friction on the bonds, calculated directly from the
Kirkwood formula, thus derives a significant contribution
from the cross-friction term between these two forces. We
find that this cross term is negative and large, and
significantly lowers the magnitude of the total friction,
thereby acting as a lubricant that enhances the dissociation

rate. This protein-water coupling results in a bimodal 1=f
noise in the force spectrum. The high frequency mode
derives contribution from the forces exerted by water, while
the relatively lower frequency mode originates from protein
fluctuations, and is strongly dependent on the nature of the
protein. These features are important in a non-Markovian
rate theory, as discussed earlier.
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