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Active matter broadly covers the dynamics of self-propelled particles. While the onset of collective
behavior in homogenous active systems is relatively well understood, the effect of inhomogeneities such as
obstacles and traps lacks overall clarity. Here, we study how interacting, self-propelled particles become
trapped and released from a trap. We have found that captured particles aggregate into an orbiting
condensate with a crystalline structure. As more particles are added, the trapped condensates escape as a
whole. Our results shed light on the effects of confinement and quenched disorder in active matter.
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Assemblies of interacting self-propelled particles, bro-
adly defined as active matter, continue attracting significant
attention [1–3]. In the last ten years, notable progress was
achieved in the understanding of the onset of collective
behavior [4–6] and characterization of some collective
states [7,8]. Spatial inhomogeneities, surface roughness,
or quenched disorder play a significant role in active
systems [9–12]. Quenched disorder, for example, may lead
to the onset of trapped states, anomalous diffusion, and
breakdown of ergodicity.
The motion of self-propelled particles on a disordered

substrate is relevant in the context of the “active conduc-
tivity.” This situation is realized when motile bacteria
propagate through a porous environment [13] or electron
gas is excited by microwaves [14]. It is an analog of the
equilibrium problem of electron migration in random
media. If the substrate is approximated as an array of
well-separated traps (impurities), then the process can be
viewed as a sequence of escapes and retrappings. For
electrons trapped by impurities, a nonzero conductance is
due to the overlap of wave functions of electrons at
individual impurities (Dykhne theorem [15]). However,
no such general result is known for active particles.
While bacteria swim in a viscous environment, their

hydrodynamic interactions often become important only
for high concentrations. On the contrary, scattering and
collisions describe the interaction between individual
bacteria and obstacles in dilute suspensions. In this sit-
uations, the hydrodynamic interactions are negligible [16].
In this Letter, we study how self-propelled particles are

captured and released by an isolated trap modeled as a
potential well. We start with noninteracting particles and
show that an individual particle typically exhibits chaotic
scattering by a trap. Then we introduce interactions. A
Lennard-Jones potential organizes particles into an orbiting

condensate with the hexatic crystalline order. An align-
ment coupling brings dissipation and synchronization in
the dynamics, and results in perpetual capture of active
particles: a trap becomes an analog of a “black hole.”
“Bombardment” by active particles results in particle
absorption, condensate melting, and recrystallization.
Above a certain threshold number of captured particles,
the trap storing capacity is exceeded, and the condensate
escapes as a whole.
Active particles in a harmonic trap have been studied

both experimentally [17–19] and theoretically [20–24].
The main focus was on the steady-state distributions or
escape of individual particles due to the combined effect of
self-propulsion and thermal fluctuations. In this Letter, we
examine mostly deterministic effects of propulsion and
interactions; this aspect of our model manifests a crucial
difference not explored in other publications.
We consider a self-propelled particle moving in two

dimensions with a constant velocity Ṽ, while a force f
acting on the particle only rotates its direction of motion:

dr
dt

¼ Ṽn;
dn
dt

¼ f − ðn · fÞn: ð1Þ

Here n ¼ ðcos θ; sin θÞ is the unit vector in the direction
of motion. The equation for n ensures that jnj2 ¼ 1.
Thus, only the velocity direction changes and obeys
_θ ¼ fy cos θ − fx sin θ. Physically, velocity aligns with
the potential gradient. This situation can be realized, for
example, for magnetic particles in a magnetic trap. Models
of this type were also discussed in the context of artificial
chemotaxis [25–27].
Below we consider different types of forces, but we start

with a motion in an external potential field Uðx; yÞ, so that
fpot ¼ −∇U. If we renormalize variables so that the width
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and the depth of the potential are one, the only remaining
relevant parameter is the dimensionless velocity V. The
limit of strong potential is that of V → 0. The correspond-
ing equations can be written as

dr
dt

¼ Vn; ð2Þ

dθ
dt

¼ −∂yU cos θ þ ∂xU sin θ: ð3Þ

Equations (2) and (3) possess the Hamiltonian

Hðr;pÞ ¼ Vjpj − exp

�
−
UðrÞ
V

�
¼ 0: ð4Þ

Because of the energy conservation, the rela-
tion jpj ¼ V−1 exp½−UðrÞV−1� holds. A substitution p ¼
V−1 exp½−UðrÞV−1�n reduces the Hamiltonian dynamics to
Eqs. (2) and (3). The Hamiltonian (4) coincides with that
describing ray propagation in geometrical optics, with the
refraction index ∼ exp½−UðrÞV−1� [28].
In the small velocity limit, V ≪ 1, one can separate slow

migration of the particle [Eq. (2)] and its fast alignment
with the gradient of the potential [Eq. (3)]. The orientation
angle θ in Eq. (3) adjusts to the gradient angle α ¼
arctanð∂yU=∂xUÞ as _θ ¼ j∇Uj sinðα − θÞ. This fast adjust-
ment of the direction of motion toward the minimum of the
potential is followed by a slow drift (2). Once the vicinity of
the potential minimum is reached, i.e., j∇Uj ≈ 0, the scale
separation breaks down, and one has to consider the full
Eqs. (2), (3).
In the vicinity of a minimum, a generic potential is

approximated by an asymmetric parabolic well, Upb ¼
ðx2 þ b2y2Þ=2. Since the depth of this harmonic potential is
not defined, one can set by virtue of a renormalization,
parameter V in Eqs. (2) and (3) to one. Then the only
parameter left is the potential asymmetry b. Since the
dynamics is Hamiltonian, the type of motion depends on
initial conditions.
Figure 1 illustrates the dynamics for b2 ¼ ffiffiffi

5
p

− 1
(other values of b give qualitatively the same picture).
The three-dimensional phase space is reduced to a two-
dimensional Poincaré map [we chose the section cos θ ¼ 0,
½d=ðdtÞ�ðcos θÞ < 0]. One sees a large chaotic domain
(black dots) (video 1 in the Supplemental Material [29])
and regular islands filled with quasiperiodic trajectories.
This Poincaré map is unusual for the Hamiltonian dy-
namics: the distribution is very inhomogeneous—density
of points at small r values is much larger than at large ones.
That happens because the “natural” coordinates ðr; θÞ are
not the canonical ones. One estimates the density on the
plane ðx; yÞ by assuming a fully developed chaos where
the angle θ is random and uniformly distributed. Then
integration of a microcanonical distribution density for the

Hamiltonian (4) wðr;pÞ ∼ δ(Vjpj − expf−½UðrÞ=V�g)
over the angle θ yields WðrÞ ∼ exp ½−UðrÞ=V�. This
resembles the Gibbs-Boltzmann distribution, with the
velocity V playing a role of the temperature. It implies
that the chaotic motion in Fig. 1 spreads to arbitrarily large
values of the potential, although it is rather improbable to
reach these heights. We conclude that although a slow
particle arrives at the minimum of the potential and moves
chaotically there, after a long time, it returns to the high
values of the potential where it started. Such a return must
happen according to the recurrence of the Hamiltonian
trajectories. In addition to a chaotic region in Fig. 1, there
are domains of quasiperiodic dynamics concentrated close
to the potential minimum. This motion can occur for
particles starting close to the minimum.
The Hamiltonian structure of Eqs. (2) and (3) implies

that capture of particles falling in a finite-depth potential
well is impossible. Only temporary trapping occurs that can
be interpreted as a chaotic scattering: a particle falls into the
well, goes to its minimum, and moves there chaotically like
in Fig. 1, but eventually rises high and escapes (video 2 in
Supplemental Material [29]). Furthermore, because of the
exponential density W ∼ exp½−U=V�, the characteristic
trapping time obeys a Kramers-like law T tr ∼ exp½−1=V�.
This is confirmed in Fig. 1 [inset (a)] where the mean
trapping time on a Gaussian potential well Uðx; yÞ ¼
− expð−x2 − b2y2Þ is shown.
While we focus mainly on the deterministic dynamics,

there is a highly nontrivial effect due to the interplay of
the chaotic dynamics with noise. Because there are large
regular islands, the impact of small noise would be
infiltration of chaotic trajectories into these islands, which
drastically enlarges the trapping time [30]. As a result,
the trapping time vs noise intensity has a maximum
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FIG. 1. Poincaré map for a parabolic potential b2 ¼ ffiffiffi
5

p
− 1

(color background). Black dots: a chaotic trajectory starting at
large jxj; jyj. The chaotic dynamics is not ergodic as it contains
voids with closed curves—images of quasiperiodic trapped
motion. Inset (a): Trapping time T tr ∼ expð1=VÞ in a Gaussian
potential well vs velocity V, b ¼ ð ffiffiffi

5
p

− 1Þ=2. Inset (b): T tr in the
same well vs noise intensity σ for V ¼ 0.1, 0.15, 0.2 (from top to
bottom).
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[Fig. 1 (inset (b))] at a moderate noise level, while this time
is smaller for pure deterministic dynamics and strong noise.
We consider two types of interactions between particles

below: (i) interaction by a potential force; (ii) an alignment
to an average (over a neighborhood) orientation of neigh-
boring particles—this latter interaction is of the Vicsek (or
Kuramoto) type [4,31].
We start with the interaction via a conservative pairwise

force that depends on the distance between the particles.
This case, like the motion in the external potential above, is
Hamiltonian. We explore below the Lennard-Jones (LJ)
potentialULJðr1;r2Þ¼4ðρ−12−ρ−6Þ, where ρ2 ¼ jr1 − r2j2.
Several particles having a small velocity V placed close to
each other, form a bounded state due to the LJ coupling. For
two particles, the bounded state is quasiperiodic, while for
N ≥ 3 it is typically chaotic. Several particles form a
chaotically vibrating “crystalline molecule” with a hexatic
order. The center of mass (c.m.) performs a diffusive motion
in the plane ðx; yÞ, and the particles from time to time
rearrange their positions, see Figs. 2(a) and 2(b) and video 4
in the Supplemental Material [29]. Because the LJ potential
is finite, there is a nonzero probability for a particle to
escape. Such an event is shown in Fig. 2(b). Figure 2(c)
shows that the lifetime TLJ of a “shaking crystal” without
confining potential has the same Kramers-type dependence
on the velocityTLJ ∝ exp½V−1�, as the lifetime of a particle in
a potential well; cf. Fig. 1 inset (a). A crystalline molecule
has a significant lifetime only for particles with V ≲ 0.5.
The aligning force Fk acts in the direction of the

weighted average of the velocities of other particles in a
neighborhood of the kth particle:

Fk ¼ ϵ
X
j

Sðjrj − rkjÞnj: ð5Þ

The distance-dependent factor [we assume it to be Gaussian
SðrÞ ¼ expð−r2=r20Þ] defines the range r0 of the force.
Parameter ϵ determines the strength of the alignment.
The alignment force is velocity-dependent and dissipative.
In terms of the velocity direction θ it has the form of
Kuramoto-type coupling _θk ∼ sinðθj − θkÞ.
We examine next a combination of the alignment and the

conservative forces due to a confining potential or an LJ
interaction (for a pure alignment see Ref. [32]).
We start with a set of chaotic particles in a harmonic trap

(Fig. 1), described by Eqs. (2), (3) with additional align-
ment (5). The main observation is that for large values of ϵ
and large ranges of coupling r0, particles always synchron-
ize: after some transient time, all the coordinates and angles
coincide, and the particles form a synchronous point cluster
r1 ¼ … ¼ rN , θ1 ¼ … ¼ θN (video 3 in the Supplemental
Material [29]). This synchronization is possible because the
aligning force is dissipative [9]. In the final synchronous
state dissipation disappears [the force ∼ sinðθj − θkÞ van-
ishes], and the trajectory of the cluster is described again by
the Hamiltonian dynamics (2) and (3). However, in the
course of alignment, particles leave the chaotic domain, and
the final dynamics is quasiperiodic (cf. Fig. 1). Thus, strong
alignment synchronizes particles and regularizes their
motion. For lower alignment rates ϵ and especially for
small ranges r0, multiple states with several clusters are
observed up to large times. If the alignment coupling radius
r0 is small enough, several regular clusters may effectively
stop to interact; then they constitute an “attractor.”
Noteworthy, standard methods of the synchronization
theory, like the master stability function method [33],
are not applicable here because the type of motion (from
chaos to quasiperiodicity) changes over time. In Fig. 3(a)
we illustrate the rate of synchronization in dependence on
the parameters ϵ and r0. At large r0 there is an “optimal”
coupling strength. We attribute this to the fact that, for large
r0, the alignment coupling is a global one. Because the
velocities of distant particles are effectively “de-aligned” by
different potential forces they experience at different
positions in the harmonic trap, the alignment slows down.
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FIG. 2. Trajectories of three coupled particles in the ðx; yÞ
plane, for the LJ potential, for V ¼ 0.1 (a) and V ¼ 0.2 (b).
Circles show positions of particles at time t ¼ 100, squares at
time t ¼ 500. In panel (b) one sees the breakdown of the bounded
state into a couple of particles moving to the left, and a particle
moving to the right. (c) Average lifetime of a crystal ofN particles
vs inverse velocity 1=V. The dissociation time is defined as an
event when one particle leaves.
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FIG. 3. (a) The average time at which 20 initially randomly
distributed particles in a harmonic potential form 10 clusters due
to alignment. For small r0 this time monotonically decreases with
coupling strength ϵ, while for large ranges of r0 ≳ 0.5 there is an
optimal coupling strength. (b) Average time to synchronization
for chaotic crystals composed of N particles, for V ¼ 0.1 and
different strengths of alignment forces ϵ.
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At small values of r0, only neighboring particles interact,
and they are much more “synchronizable” because their
trajectories in the potential may easily adjust as well.
In the case of alignment of particles trapped by a finite-

depth potential well, two timescales compete: the trapping
time T tr determined by the velocity V (cf. Fig. 1 [inset (a)]);
the synchronization time Tsyn [e.g., one can take the
clustering time of Fig. 3(a)]. If Tsyn ≫ T tr, almost all
particles escape from the well and spread. In the opposite
limit, Tsyn ≪ T tr, a complete self-trapping due to alignment
occurs: a cluster of synchronous trapped quasiperiodically
moving particles appears. Thus, the potential well becomes
an effective “black hole”: particles are trapped perpetually
due to dissipative alignment. In an intermediate case
Tsyn ∼ T tr, some particles escape while others form a
perpetually trapped cluster. The black hole relies on the
existence of trapped quasiperiodic dynamics in a smooth
potential well. For particles escaping from a billiard (hard
potential), such perpetual trapping is impossible, see
Ref. [34] for the collective escape of aligned particles
from a circular billiard with a hole.
A combination of the LJ and the alignment interactions

allows for synchronization of the crystal (cf. Refs. [35,36]).
Point clusters cannot be formed because particles cannot
come close to each other due to the LJ repulsion at small
distances. Thus, only orientations θk can synchronize. Here
a relation between the synchronization time and the lifetime
due to potential forces is crucial.
We describe the combined action of the LJ and alignment

interactions for particles in the finite-well potential,
because, for small enough velocities, the particles are
practically trapped forever. We chose the width of the well
to be approximately ten times larger than the characteristic
spatial scale of the LJ potential so that only a few particles
fit into the well.
Figure 4 illustrates the dynamics of seven particles.

Initially, they form a shaking crystal with a random motion
of the c.m., Fig. 4(b). The orientational order is characterized

by the Kuramoto order parameter R ¼ jheiθij, Fig. 4(a). In
the disordered state, the order parameter fluctuates around
R ≈ 0.4. At t ≈ 2500, an abrupt transition to synchrony in
the directions of motion is observed, beyond this transition
R ≈ 1. The crystal becomes ordered, and the c.m. performs a
quasiperiodic motion, Fig. 4(c), and all the particles become
perpetually trapped (video 5 in SupplementalMaterial [29]).
The abrupt transition to synchrony from a chaotic crystal

should be contrasted to the clustering transition without the
LJ coupling. In the latter case, the order parameter grows
gradually as the particles continuously come closer and
merge. In contradistinction, the process depicted in Fig. 4(a)
is characterized as transient chaos that abruptly ends in an
absorbing synchronized state (see a general exposition of
transient chaos [37], and a case of chiral active particles
in Ref. [38]).
To examine the dependence of the synchronization time

on the size of the crystal, we consider a set of N active
particles. We take the LJ interaction and additional align-
ment coupling with r0 ¼ 1 (i.e., the same range as the LJ
potential) but without a confining external potential. To
ensure that the lifetime of the crystal is larger than a
characteristic synchronization time [cf. Fig. 2(c)], we
considered particles with small velocity V ¼ 0.1.
Figure 3(b) shows that the dependence of the synchroniza-
tion time on the size of the crystal is exponential
Tsyn ∼ gðϵÞ exp½hðϵÞN�, with ϵ-dependent factors g, h.
That implies that here a supertransient behavior [37,38]
is observed, for which a characteristic time exponentially
grows with the system size.
Finally, we studied how many particles can be trapped in

a potential well in the process illustrated in Fig. 4. We
assume for simplicity that r0 ¼ ∞, i.e., all particles in the
well equally contribute to the alignment. The particles from
outside bombard the trap one by one at regular time
intervals. They form a crystal, the dynamics of which is
followed using the alignment order parameter R; see Fig. 5.
One sees that in some cases adding a particle melts the
crystal. In other cases, a particle is absorbed into the
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existing order. Finally, the crystal as a whole escapes the
potential well because an incoming particle “kicks” it from
a trapped quasiperiodic regime into an escaping trajectory.
We observed that only a synchronized crystal can escape
(video 6 in Supplemental Material [29]). Figure 5 (inset)
depicts the average size of the escaping crystal hSi vs ϵ. It
shows a significant increase of a typical escaping crystal
size for low alignment rates ϵ. That occurs because for
global coupling, the alignment rate is proportional to the
number of particles. Therefore, for small ϵ, a sufficient
number of interacting particles is required to form a
synchronous crystal.
In conclusion, we investigated the trapping of individual

and interacting active particles. The problem is nontrivial
for slow particles (deep potentials), that spend a long time
close to the bottom. We have found that noninteracting
particles can be trapped only for a finite time due to the
Hamiltonian structure of the equations of motion. In turn,
an alignment of particles brings dissipation and establishes
a time arrow. So, the potential well becomes a black hole
with perpetually captured particles on quasiperiodic tra-
jectories. The particles synchronize, forming either a
cluster or a coherent crystal if additional LJ coupling is
taken into account. These two cases possess different
transients to synchrony—gradual in the former case and
abrupt in the latter one. With the particle bombardment, we
observe a nontrivial trapping behavior: melting and
resynchronization of crystals, and eventually a coherent
escape of the entire assembly.
The problem we have studied is relevant for the under-

standing of active matter subject to quenched environmen-
tal disorder. For the media, which can be interpreted as an
array of randomly positioned traps, the process can be
represented as a sequence of the described above trapping
events. Our study also shows that the disorder may have a
finite trapping capacity. Once the traps are filled up, the
further bombardment may lead to the spontaneous ava-
lanchelike release of many particles.
We focused on small assemblies of active particles

with a low noise level. This situation is relevant for
experiments with microrobots or vibrated discs
[17,35,36]. An interplay of the dynamics and noise
has been shown to be highly nontrivial for the trapping,
with an optimal noise level ensuring maximal trapping
time. An extension to larger populations and effects of
noise is an ongoing study.
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