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The isothermal crystallization near the glass transition temperature from the melt state of poly
(trimethylene terephthalate) has been studied by wide-angle x-ray diffraction (WAXD), small-angle x-ray
scattering (SAXS), and optical microscopy. The SAXS and WAXD results show the crystallization
mechanism in which the crystalline nodules cover the entire sample with the formation of aggregation
regions. The analysis of the SAXS results using Kolmogorov-Johnson-Mehl-Avrami theory indicates that
the formation kinetics of the aggregation regions is of three-dimensional homogeneous nucleation type.
The analysis of the SAXS profiles using Sekimoto’s theory provides the growth velocity and the nucleation
rate of the aggregation region. The temperature dependence of the growth velocity of the aggregation
region is a natural extrapolation of that of spherulite to the high supercooling region. The temperature
dependence of the nucleation rate of the aggregation region is also represented by the parameters of the
spherulitic growth rate. The result of the growth velocities of the aggregation region and the spherulite
suggests the existence of precursors at the front of the crystal growth.
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Traditionally, the classical crystallization theory has
explained crystal nucleation and growth mechanism;
however, recently two-step features of crystallization with
the formation of precursor regions has been discussed
in experimental [1–6], simulation [7–9], and theoretical
studies [10,11].
Semicrystalline polymers do not perfectly crystallize

but form a hierarchical structure unlike low molecular
materials due to its morphological characteristics. The
polymer crystallization model proposed by Lauritzen and
Hoffmann as the secondary nucleation and growth process
[12] has been traditionally used for investigation of polymer
crystallization. The initial stage of the polymer crystalliza-
tion has been investigated bymany researchers [13–34], and
the existence of precursors has been pointed out in the early
stage of polymer crystallization [13,20,24–27,31–33].
Recently, a large intensity of small angle x-ray scattering

in the low wave number region has been observed during
the induction period of crystallization near the glass
transition temperature Tg for poly(trimethylene terephtha-
late) (PTT) from the glassy state [35,36]. Electron micro-
graphs of PTT crystallized at 55°C from the glassy state
show the crystalline nodular morphology in the nanometer
scale separated by an amorphous region [35]. In a previous
study [37], we have also investigated the crystallization
from both the melt and glass states of PTT, and have
revealed the crystallization mechanism in which the crys-
talline nodules cover the entire sample with the aggregation
regions. The purpose of this Letter is to elucidate the

kinetics of the polymer crystallization with aggregating the
crystalline nodules. In order to achieve this purpose,
we have investigated the crystallization processes from the
melt state using x-ray techniques and optical microscopy.
The polymer sample used in this study is PTT. The

melting and the glass transition temperatures are deter-
mined as 233 and 45°C, respectively, by differential
scanning calorimetry (DSC). The PTT films of about
150 μm are isothermally crystallized at crystallization
temperatures Tc, between 50 and 70°C, from the melt state.
The isothermal crystallization processes are investigated

by simultaneous small-angle x-ray scattering (SAXS) and
wide-angle x-ray diffraction (WAXD). The camera lengths
of WAXD and SAXS are 100 and 4000 mm, respectively.
The wavelength λ for WAXD and SAXS is 1.3 Å. The
measurements are performed using the beam line BL-40B2
at SPring-8, Nishiharima, Japan. The x-ray camera for
SAXS is Pilatus3S 2M (Dectris) that has a larger light-
receiving area than the one in the previous study [37], and
can cover a wide range of the scattering vector,
q ¼ 4π sin θ=λ, from 0.002 to 0.16 Å−1 in one exposure,
where 2θ is the scattering angle. The camera for WAXD is a
flat panel detector (Hamamatsu Photonics), and covers
from q ¼ 0.5 to 3.0 Å−1. The isothermal crystallization
process at the crystallization temperature Tc between 90
and 160°C after melting at 280°C for 2 min is observed by a
polarized or an optical microscope (Nikon ECLIPSE
ME600) in order to measure the growth rate of the
crystalline spherulites. The temperature of the samples is
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controlled using a Linkam LK300 which gives the cooling
rate 300 K=s.
In a previous study, it has been clarified that the

crystalline nodules aggregate and that the aggregation
regions cover the entire sample of PTT crystallized near
Tg. In this Letter, the kinetics of the nodular aggregation
region for PTT will be considered using the simple theory
proposed by Kolmogorov, Johnson, Mehl, and Avrami
(KJMA) theory [38–42]. The KJMA theory predicts the
kinetics of nucleation and growth transformations from the
metastable phase into the stable phase for nonconserved
system as

XðtÞ ¼ 1 − expð−KtnaÞ; ð1Þ

where XðtÞ is the volume fraction of the stable domains, K
is a constant, and na is an Avrami exponent.
For the SAXS measurements, the intensity when the

crystallization time tc is zero, Iðq; tc ¼ 0Þ, is subtracted
from Iðq; tcÞ, IsubðqÞ ¼ Iðq; tcÞ − Iðq; tc ¼ 0Þ. The
WAXD profiles in Fig. S1(a) [43] show that PTT quenched
to 60 °C at tc ¼ 0 is amorphous. Figures 1(a) and 1(b) show
the tc-dependent SAXS profiles IsubðqÞ for PTT isother-
mally crystallized at 60°C from the melt state until and after
260 s, respectively. Since IsubðqÞ shows different behaviors
in the low- and high-q regions, IsubðqÞ can be given by
IsubðqÞ ¼ ILðqÞ þ IHðqÞ, where ILðqÞ and IHðqÞ represent
IsubðqÞ at q < 0.02 Å−1 and q > 0.02 Å−1, respectively.
The intensity ILðqÞ decreases with q, and increases with tc
until 260 s and then decreases after 260 s. On the other
hand, IHðqÞ has a peak against q, and monotonically
increases with tc. The features shown in the SAXS intensity
correspond well to those reported by Chuang and co-
workers [35] and a previous our study [37].

The three-dimensional isotropic SAXS intensity, ItotðqÞ,
for the crystallization mechanism with aggregating the
nodules has been previously proposed as [37]

ItotðqÞ ¼ I0ðΔρacÞ2fχð1 − χÞψ2SηðqÞ
þ χψð1 − ψÞSγðqÞg; ð2Þ

where SηðqÞ, SγðqÞ are the normalized structure factors for
the aggregation regions in the entire sample and for the
nodules in each aggregation region, respectively. χ and ψ
are the volume fractions of the aggregation regions and the
nodules in each aggregation region, respectively, I0 is a
constant, and Δρac is the density difference between the
crystal and the amorphous. The volume fraction of the
nodules in the entire sample corresponds to the crystallinity
ϕc ¼ χψ . ψð1 − ψÞSγðqÞ in Eq. (2) can be generally
expressed as ψVnjΦðqÞj2F ðqÞ, where Vn is the volume
of the nodule, jΦðqÞj2 is the normalized form factor for the
nodule, and F ðqÞ is the structure factor for internodules. It
has been reported that the distribution of the crystalline
nodules is discrete and random sinceF ðqÞ can be described
as the Percus-Yevick approximation [45] of the hard
spheres model [35].
Equation (2) represents the intensity IsubðqÞ obtained

from the SAXS results. The first and second terms in the
right-hand side in Eq. (2) should be regarded as ILðqÞ and
IHðqÞ, respectively. Assuming constant ψ , the values of χ,
χQ, ψ , ψQ, and ϕc, ϕQ

c , can be calculated from the
invariants of ILðqÞ and IHðqÞ [37]. The detailed procedure
for obtaining χQ, ψQ, and ϕQ

c is described in Sec. 2 in
Supplemental Material [43]. The calculation result shows
ψQ ¼ 0.246 and the tc dependences of χQ and ϕQ

c

(¼ψQχQ) depicted in Fig. 2(a). The crystallinity calculated
from the WAXD result, ϕW

c , in Fig. S1 [43] is depicted in
Fig. 2(a). ϕQ

c agrees with ϕW
c until 400 s in Fig. 2(a). The

quantitative agreement indicates that the approximation of
constant ψ is valid during the formation of the nodular
aggregates. However ϕW

c keeps on increasing after 400 s
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FIG. 2. (a) tc-dependent χ and ϕc obtained from SAXS and
WAXD results, and (b) double logarithmic plots of − lnð1 − χÞ
against tc. In (a) solid and broken curves are calculated χ and ψχ,
respectively, using Eq. (1) with Inv30 ¼ 1.53 × 10−10 s−4 and
ψQ ¼ 0.246. The triangle in (b) indicates a slope of 4.

q (Å
-1

)

I
bus
( 
q

 )
)stinu .bra(

(a) (b)

q (Å
-1

)

10-2

10-1

100

101

102

103

0.01 0.1

 data, fitting , fitting with , tc
,  , ,  110 s
,  , ,  140 s
,  , ,  170 s
,  , ,  200 s
,  , ,  230 s
,  , ,  260 s

0.01
2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

0.1

 data, fitting , fitting with , tc
, , ,  290 s
, , ,  320 s
, , ,  350 s
, , ,  380 s
, , ,  410 s
,         ,         ,   3590 s

FIG. 1. SAXS profiles IsubðqÞ as a function of tc for PTT
crystallized at 60 °C from the melt state (a) until and (b) after
260 s. Both the broken and solid curves in (a) and (b) are the
theoretical curves obtained using S̃hngðqÞ and S̃0hngðqÞ, respec-
tively, with v0 ¼ 2.3 Å=s and In ¼ 1.26 × 10−11 Å−3 s−1. The
solid curves are calculated using v0 with a coefficient of variation
σ=v̄0 of 20%. The right triangle in (a) indicates a slope of −4.
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[Figs. 2(a) and S1(c) [43]]. The increase in ϕW
c comes from

the increase in tc-dependent ψ due to the thickening of the
crystalline nodules or the nucleation of the nodules in the
narrow space between the previously formed nodules.
The tc dependence of χ is analyzed by KJMA theory,

regarding X in Eq. (1) as χ. Figure 2(b) shows the double
logarithmic plot of − lnð1 − χÞ against tc. The result shows
that na ¼ 4, that is, the nodular aggregates forms by three-
dimensional homogeneous nucleation and growth (3D-
homoN&G). Then K becomes ðπ=3ÞInv30 where In and
v0 are the nucleation rate and the isotropic growth velocity
of the aggregation regions, respectively. The value of Inv30
can be estimated as Inv30 ¼ 1.53 × 10−10 s−4. Figure 2(a)
shows that tc-dependent χ, χhng, using Eq. (1) with Inv30 ¼
1.53 × 10−10 s−4 agrees with χQ and that ψQχhng also
agrees with ϕQ

c and ϕW
c . The quantitative agreement

strongly indicates that the formation kinetics of the nodular
aggregates is 3D-homoN&G.
Sekimoto has theoretically derived the time dependent

structure factor Shngðq; tÞ of the domains for homogeneous
nucleation and growth [46]. The three dimensional iso-
tropic Shngðq; tÞ can be written as

Shngðq; tÞ ¼ ð2πÞ3
�
1 − exp

�
−
π

3
Inv30t

3

��
2

δðqÞ

þ S̃hngðq; tÞ; ð3Þ

where

S̃hngðq; tÞ ¼ 4π exp

�
−
2π

3
Inv30t

4

�
ð2v0tÞ3

×
Z

1

0

dyy2
sinð2v0tyqÞ
2v0tyq

fexp½Inv30t4Ψ3ðyÞ�− 1g

ð4Þ

and Ψ3ðyÞ ¼ π
3
ð1 − yÞ3ð1þ yÞ. When Eq. (3) is applied to

the nodular aggregation system, the first term of Shngðq; tÞ
becomes ð2πÞ3χ2δðqÞ, and S̃hngðq; tÞ corresponds to χð1 −
χÞSηðq; tÞ in Eq. (2). Thus, when ψ is constant, the ILðq; tcÞ
behavior obeys Eq. (4). ILðq; tcÞ is analyzed using Eq. (4)
with Inv30 ¼ 1.53 × 10−10 s−4. Figure 1 shows that the
SAXS intensity using Eq. (4) with v0 ¼ 2.3 Å=s and In ¼
1.26 × 10−11 Å−3 s−1 (the dashed curves) represents
ILðq; tcÞ well.
However, comparing ILðqÞ and S̃hngðqÞ in Fig. 1 in more

detail, S̃hngðqÞ has oscillation patterns, while ILðqÞ has a
slope of −4. The oscillation in S̃hngðqÞ comes from the form
factor in which the maximum size of the ideal spherical
domain is definite. Therefore, it is considered that the
growth rate v0 for the nodular aggregation region has the
Gaussian distribution, the average v̄0 and the standard
deviation σ. The derivation of the structure factor

considering the Gaussian distribution of v0, S̃0hngðqÞ
[Eq. (S4)], is described in Sec. 3 in the Supplemental
Material [43] in detail. Solid curves in Fig. 1 show the
calculation curves using S̃0hngðqÞ with v̄0 ¼ 2.3 Å=s,

In ¼ 1.26 × 10−11 Å−3 s−1, and a coefficient of variation,
σ=v̄0 ¼ 0.2. The oscillation patterns in the calculation
curves using S̃hngðqÞ disappear, and thus S̃0hngðqÞ reprodu-
ces IsubðqÞ better than S̃hngðqÞ. The agreement between
S̃0hngðqÞ and ILðqÞ suggests that the formation kinetics of
the nodular aggregates is 3D-homoN&G. The values of v0
and In give the characteristic length ξ0 ¼ ðv0=InÞ1=4 and
the characteristic time τ0 ¼ ξ0=v0 in the system. ξ0 and τ0
are the typical length and time for the aggregation regions
to contact each other, respectively. ξ0 and τ0 for Tc ¼ 60°C
are estimated as 654 Å and 284 s, respectively. tc at which
IsubðqÞ becomes maximum, th, shows χ ¼ 0.5, and equals
to ð3 ln 2=πÞ1=4τ0. th for Tc ¼ 60°C is estimated as 256 s.
To further investigate the Tc dependences of v0 and In,

x-ray measurements of melt-crystallized PTT for different
Tc have been performed. Figures S3(a)–S3(d) and S4 show
that IsubðqÞ for different Tc also has ILðqÞ and IHðqÞ and
that these intensities behave similarly to those for
Tc ¼ 60°C [43]. χQ are obtained from ILðqÞ by the same
procedure for Tc ¼ 60°C. The double logarithmic plots of
− lnð1 − χÞ against tc for all Tc in Fig. S5 show that na ¼ 4
[43]. The result indicates that the kinetics of the nodular
aggregation regions for all Tc are 3D-homoN&G. The
fittings to ILðqÞ for all Tc have been, furthermore,
performed using Eq. (S4) with the Inv30 values obtained
from Fig. S4 and σ=v̄0 ¼ 0.2 [43]. The fitting curves in
Figs. S3 and S4 also reproduce ILðqÞ well for all Tc and
give the values of v0 and In for each Tc [43].
Figure 3(a) shows the Tc dependences of v0 and In. v0

increases with increasing Tc, while In shows the bell shape
with the maximal at Tc ¼ 60°C. The slowdowns near Tg for
both v0 and In indicate that the formation of the aggregates is
dominated by the translational diffusion in the media. The
slowdown above 60°C for In is predicted to come from a
sharp increase in the activation energy required for the
critical nucleation of the nodular aggregates. TheTc depend-
ences of v0 and In for the nodular aggregates are similar to
those of spherulites ordinarily observed by optical micros-
copy. TheTc dependences of ξ0 and τ0 can be also calculated
by obtained v0 and In in Fig. 3(b). ξ0 increases with
increasing Tc, but is smaller than the size of spherulites
in amicrometer scale. τ0 decreasewith increasingTc. TheTc
dependence of τ0 shows that the system is dominated by
translational diffusion as mentioned above.
The kinetics for the nodular aggregates is similar to those of

spherulites as mentioned above, and thus it is very interesting
to compare the growth kinetics of nodular aggregates and
spherulites. The Tc dependence of v0 can be directly com-
pared with that of the spherulitic growth rate u. Figure 3(c)
shows the Tc dependences of v0 and u. The secondary
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nucleation type spherulitic growth rate u for polymer is well
written as u¼u0β expf−½KG=(TcðT0

m−TcÞ)�g, where u0
and KG are constants, T0

m is the equilibrium melting temper-
ature, and β is the Vogel-Fulcher-Tammann type diffusion
term, given by β ¼ expf−½U=(RðTc − TVÞ)�g, U is a con-
stant, R is the ideal gas constant, and TV is the Vogel
temperature. U ¼ 1500 cal and TV ¼ Tg − 30 K are used
as typical values for polymer materials [12]. When T0

m ¼
277°C [47], the fitting growth rate curve in Fig. 3(c) shows that
the Tc dependence of v0 is a natural extrapolation of that
of u to the high supercooling region. KG is estimated as
4.23 × 105 K2.
The homogeneous nucleation rate is given as

In ¼ In0β expf−½KI=(TcðT0
m − TcÞ2Þ�g, where KI is a

constant. The fitting curve with KI ¼ 9.97 × 108 K3 well
reproduces the Tc dependence of In in Fig. 3(a). A general
polymer crystallization model often gives the situation
in which the chain-folded nucleation and then multinu-
cleation based lamellar growth. The situation gives KI ¼
f½32ζeζ2sðT0

mÞ2�=½kBΔH2�g and KG ¼ ð2bζeζsT0
m=kBΔHÞ,

where ζe and ζs are the folding and the lateral surface
energies, respectively, kB is the Boltzmann constant
and ΔH is the enthalpy difference between crystal and
amorphous, and b is the thickness of the stem added
on the substrate [12]. The relation between ζs and ΔH is
given as the Thomas-Staveley (TS) relation [48,49],
ζs ¼ αTSðabÞ0.5ΔH, where αTS is constant depending on
material properties and a is the width of the stem.
Assuming a ≒ b, the TS relation leads KI=KG ¼
16αTST0

m and gives αTS ¼ 0.27. The value of αTS is
estimated as 0.3–0.4 for ordinary organic materials [48]
and 0.1–0.3 for polymers [49,50]. Thus the Tc dependence

of In also can be represented by the parameters estimated
for the lamellar growth u.
The results of v0, u, and In show that the nucleation rate

and growth rate of the aggregation region composed of the
discretely located nodules can be described using the
parameter estimated for the ordinary lamellar growth and
provide a following possible scenario for polymer crystal-
lization. The precursor forms just before the nucleation of
the nodular aggregation region or of the crystalline lamella,
and in front of the growth face of the aggregation region or
the lamella. The precursor is incorporated and transforms
into a part of the crystalline lamella well above Tg, while it
transforms into the crystalline nodule without transforming
into the lamellae near Tg.
The homogeneous nucleation process near Tg has been

detected by fast differential scanning calorimetry (fast-
DSC) [34]. Our results strongly suggest that the homo-
geneous nucleation detected by fast-DSC comes from the
formation of the aggregation regions of the nodules.
The lamellae composed of the crystalline nodules

(small globules) have been observed by electron micros-
copy [51–53]. Strobl have proposed the model that the
lamellae form with attaching the small globules at the
growth front through the mesophase [30]. Miyoshi and co-
workers [32,33] have reported using nuclear magnetic
resonance (NMR) techniques that there are chain foldings
even in the nodules of isotactic polypropylene and that the
NMR results are direct evidence of the cooperative coars-
ening of the nodules. Muthukumar’s model explains the
early stage of nucleation by precursor “baby nuclei”
followed by a cooperative coarsening of these multiple
nuclei on the basis of the entropic effect of the polymer
chain between baby nuclei by theoretical and simulation
methods [24–26].
These results are consistent with our scenario. The

reported models [26,30], however, explain the formation
of the lamella composed of the nodules connected to each
other in the direction parallel to the growth face, but do not
discuss the nucleation and growth of the aggregation
composed of the “discretely” located nodules. Our results
have the potential to develop these models. It is unique in
classical crystallization that the nucleation and growth
mechanism of the aggregate of the discretely located
nodules and that of the spherulite are the same since the
general crystallization models are based on the attachment
of molecules to the growth front. It is important to
investigate the relation between our results and the two-
step crystallization process with forming precursors in the
other system [1–11].
In summary, in order to clarify the growth kinetics of the

crystalline nodular aggregates, the crystallization of PTT
from the melt state has been investigated by x-ray tech-
niques and optical microscopy. The analyses of the SAXS
results using the KJMA and Sekimoto’s theories reveal
that the growth kinetics of the aggregation region is
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three-dimensional homogeneous nucleation. Furthermore,
the growth velocity of the aggregation region follows
the same dependence on Tc with spherulites, and the
parameters used for the growth rate can also represent
the Tc dependence of the nucleation rate of the aggre-
gation region. The results might indicate the evidence
of the precursors dominating the formation of crystal
domains.
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