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In this Letter, we illustrate how polarized neutron scattering can be used to isolate the spin-spin
correlations of modes forming flat bands in a frustrated magnetic system hosting a classical spin liquid
phase. In particular, we explain why the nearest-neighbor spin ice model, whose interaction matrix has two
flat bands, produces a dispersionless (i.e., “flat”) response in the non-spin-flip (NSF) polarized neutron
scattering channel and demonstrate that NSF scattering is a highly sensitive probe of correlations induced
by weak perturbations that lift the flat band degeneracy. We use this to explain the experimentally measured
dispersive (i.e., nonflat) NSF channel of the dipolar spin ice compound Ho2Ti2O7.
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Momentum-independent bands in electronic and mag-
netic systems are indicative of spatially localized excita-
tions of the pertinent degrees of freedom. Systems with
such flat bands boast a huge sensitivity to perturbations,
often giving rise to exotic strongly correlated states of
matter [1–3]. Highly frustrated magnets, such as antiferro-
magnetically coupled spins on kagome and pyrochlore
lattices, have proven to be a seemingly inexhaustible gold
mine to explore flat bands and their consequential physics,
with spin ice (SI) systems [4,5] providing a particularly
fruitful setting to do so.
Momentum-resolved probes [6–10] are the most direct

methods to study flat bands experimentally, with neutron
scattering being the method of choice for magnetic systems
[9,10]. The neutron moment (spin) is sensitive to two of the
three components of the local magnetic field produced by
the material’s magnetic moments. Neutron spin polariza-
tion analysis separates the moments’ correlations into
two channels, referred to as the spin-flip and non-spin-flip
(SF and NSF, respectively) [11,12].
The flat bands of classical SI [13,14] give rise to a

low-temperature collective paramagnetic Coulomb phase
[15–17] whose emergent gauge structure is signaled in
reciprocal space by “pinch points” in the neutron cross
sections [15–17]. In SI, pinch points were first [18]
experimentally investigated in Ho2Ti2O7 [19–21] using
polarized neutron scattering [18]. In this compound, the
SF channel displays pinch points in the ðhhlÞ scattering
plane, reflecting singularities in the spin-spin correlations,
which are understood by mapping the spins to a divergence-
free vector field B [15–17,22]. Conversely, NSF scattering in
Ho2Ti2O7 [18] exhibits only broad diffuse features in ðhhlÞ
and has received minimal attention.

Interestingly, it has been noted several times [18,23–27]
that nearest-neighbor spin ice (NNSI), a foundational
minimal model [4,19,28] hosting a Coulomb phase
and thus pinch points [15–17], displays a momentum-
independent (i.e., flat) NSF ðhhlÞ scattering intensity.
Given that the NNSI model has been extensively studied
and is well understood [5,15–17,29–31], it is surprising that
this fact has not been scrutinized in any detail. This raises
the questions addressed in this Letter: how is the flat NSF
intensity of NNSI related to its flat bands [13,14], what is
the underlying physics of this relationship, and how does
the NSF acquire dispersion when interactions beyond
nearest neighbor are introduced?
Using Monte Carlo simulations and a large-N approxi-

mation, we confirm that NNSI and an extended spin
ice (ESI) model [32,33] exhibit a flat NSF at all tempera-
tures, but with a magnitude rising monotonically as
temperature decreases [see Figs. 1(c)–1(e)]. The NSF
intensity in the ðhhlÞ plane is shown to directly probe
fluctuations of modes constructed from the flat band
eigenvectors of the interaction matrix. We show how
dispersion in the NSF, which develops when moving
away from the ESI model, is a sensitive indicator of the
dispersion acquired by the originally flat bands and
explain how a dispersive NSF arises in Ho2Ti2O7 [18,34].
Model and methods.—We consider a pyrochlore lattice

consisting of L3 face-centered-cubic (fcc) unit cells with
four sites per cell [Figs. 1(a) and 1(b)] and periodic
boundaries (see the Supplemental Material [35] for
conventions). Each site i of the pyrochlore lattice hosts a
classical Ising spin [42,43], si ¼ �1, whose magnetic
moments μi ∝ siẑi are constrained along the local cubic
½111� axes ẑi. We consider a spin Hamiltonian with
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interactions between first, second, and third (class a, but
not class b [32,44,45]) nearest neighbors [see Fig. 1(a)],

H ¼ J1
X
hi;ji

sisj þ J2
X
⟪i;j⟫

sisj þ J3a
X

hhhi;jiiia
sisj; ð1Þ

with J1 > 0. Restricting to the line in parameter space
J2 ¼ J3a ≡ J0, one obtains the ESI model [32,33], for
which an extensive number of spin configurations obeying
the two-in–two-out “ice rules” [illustrated in Fig. 1(b)] are
energetically degenerate [4,15–17,19,46]. In the range
−0.5 < J0=J1 < 0.25 (including NNSI at J0 ¼ 0), these
configurations are the ground states [32,33], and we refer to
this restricted range as “the ESI line.”
In polarized neutron scattering (sc) experiments with

incident neutron polarization axis ẑsc, one defines an
orthonormal basis for each scattering wave vector q⊥ ẑsc,
with x̂sc ≡ q̂ and ŷsc ≡ ẑsc × x̂sc [35]. The scattered neutron
moment is only sensitive to the ŷsc and ẑsc components of
the magnetic moments μi, whose correlations are separated
by filtering the scattered beam by neutron spin polarization
[11,12]. This gives energy-integrated SF and NSF cross
sections [18,34,47], respectively proportional to the follow-
ing two structure factors [35]:

σSFðqÞ ¼
X
μ;ν

ðẑμ · ŷscÞhs�μðqÞsνðqÞiðẑν · ŷscÞ; ð2Þ

σNSFðqÞ ¼
X
μ;ν

ðẑμ · ẑscÞhs�μðqÞsνðqÞiðẑν · ẑscÞ: ð3Þ

Here, μ and ν label the four fcc sublattices [Figs. 1(a) and
1(b)], and sμðqÞ≡ L−3=2 P

i∈μ sie
−iq·ri are the Fourier-

transformed Ising variables (see the Supplemental
Material [35] for conventions). Our focus is the exper-
imentally preferred ðhhlÞ plane [9,18,34,47] with ẑsc ≡
½1̄10� [see Fig. 1(b)].
To calculate the spin-spin correlations in Eqs. (2) and (3),

we employ the large-N approximation [22,48] (see
Supplemental Material [35] for details), previously suc-
cessfully used to expose many key aspects of SI physics
[29,49–51]. We write Eq. (1) as H ¼ 1

2

P
ij siVijsj, where

V is the interaction matrix, with Vij the coupling between
sites i and j, and Vii ≡ ϵ̄ chosen to shift the minimum
eigenvalue of V to zero [22,35]. The large-N correlation
matrix Gij ≡ hsisji ¼ ½λ1þ βV�−1ij is 4 × 4 block diagonal
in q space [29],

GμνðqÞ≡ hs�μðqÞsνðqÞi ¼ ½λ14×4 þ βVðqÞ�−1μν : ð4Þ

Here, β ¼ 1=T with T the temperature (kB ≡ 1), and λ is a
positive temperature-dependent Lagrange multiplier deter-
mined self-consistently [22,29,51] by the saddle-point
condition Tr G≡P

ihs2i i ¼ 4L3 (the number of spins).
Results.—Starting with NNSI ðJ0 ¼ 0Þ, σSF [Figs. 1(f)–

1(h)] displays a distinct scattering pattern in ðhhlÞ, with
pinch points (white circles) developing for T=J1 ≲ 1,
signaling the onset of the Coulomb phase. In contrast,
σNSF [Figs. 1(c)–1(e)] is q independent at all temperatures,
with intensity rising monotonically as temperature
decreases. Analogous results are obtained for models on

(a)

(b)

(c)

(f) (g) (h)

(d) (e)

FIG. 1. (a) The pyrochlore lattice with its four labeled sublattices and couplings Jn up to third neighbor. α chains along ½1̄10� discussed
in the main text are highlighted in blue. (b) Two-in–two-out ice rule obeying configuration of Ising spins on a tetrahedron. (c)–(e) NSF
and (f)–(h) SF for NNSI in the ðhhlÞ plane, with pinch points indicated by white circles. The left (right) half of each panel shows the
Monte Carlo (large-N) results.
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the ESI line [35,52]. In all cases, a flat σNSF is
only observed for q ∈ ðhhlÞ and symmetry-equivalent
planes—cf. the nonflat NNSI σNSF for q ∈ ðh0lÞ in the
Supplemental Material [35].
To investigate the origin of this flatness, let Ω be a four-

component vector with components Ωμ ≡ ðẑsc · ẑμÞ in the
sublattice basis and normalized components denoted
Ω̂μ ≡Ωμ=jΩj, with which we rewrite Eq. (3) as

σNSFðqÞ ¼ jΩj2hjΩ̂μsμðqÞj2i; ð5Þ

with henceforth, implied summation over repeated index μ
in Ω̂μsμðqÞ. We refer to the normalized linear combination
of spin variables Ω̂μsμðqÞ as a “mode” (one mode for each
q) and interpret hjΩ̂μsμðqÞj2i as its thermal occupation
value (TOV). Crucially, when ẑsck½1̄10�, the Ising moments
on sublattices 1 and 2 lie orthogonal to ẑsc [see Fig. 1(b)] so
that Ω ¼ ffiffiffiffiffiffiffiffi

2=3
p ð0; 0; 1;−1Þ and jΩj2 ¼ 4=3; only spins on

sublattices 3 and 4 contribute to NSF scattering in the
ðhhlÞ plane.
To evaluate σNSF in Eq. (5), we begin with a spectral

decomposition of V, Vij ¼
P

q;n ϵnðqÞ½ψ̂nðqÞ�i½ψ̂nðqÞ��j
[13,53]. The normalized eigenvectors ψ̂nðqÞ (n ¼ 1;…; 4)
define the “normal modes” s̃nðqÞ≡P

i½ψ̂nðqÞ�isi, with sum
over sites i. The corresponding eigenvalues ϵnðqÞ ≥ 0 are the
normal mode energies, forming four bands indexed by n, with
the Hamiltonian now written as H ¼ 1

2

P
q;n ϵnðqÞjs̃nðqÞj2.

The correlation matrix G [Eq. (4)] shares the eigenvectors
of V and its eigenvalues are precisely the normal mode
TOVs, hjs̃nðqÞj2i ¼ ½λþ βϵnðqÞ�−1.
The interaction matrix for NNSI is VNNSI ≡ J1ðAþ 21Þ

and, for ESI, VESI ≡ VNNSI þ J0ðA2 − 2A − 81Þ [3]. Here,
A is the 4L3 × 4L3 pyrochlore nearest-neighbor adjacency
matrix encoding the connectivity of the lattice, which is
block diagonal in q space, with each 4 × 4 block denoted
AðqÞ. Importantly, A has two flat band, ϵnðqÞ ¼ −2, at the
bottom of its spectrum due to the geometric frustration of
this lattice. Since VNNSI and VESI are polynomials of A, they
share its eigenvectors and inherit zero-energy flat bands [3]
and positive-energy dispersive bands. Importantly, Ω̂ in
Eq. (5) is a flat band eigenvector of AðqÞ for all q ∈ ðhhlÞ
[35] and, consequently, also of VNNSIðqÞ and VESIðqÞ. From
this, it follows that the aforementioned (hhl) modes
Ω̂μsμðqÞ probed by NSF scattering are in fact flat band
normal modes of VNNSI and VESI with ϵnðqÞ ¼ 0, whose
TOVs are hjΩ̂μsμðqÞj2i ¼ λ−1. Therefore, Eq. (5) yields

σNSFðqÞ ¼
4

3λ
: ð6Þ

Thus, the ðhhlÞ NSF is q independent, increasing mono-
tonically from 4=3 in the high-T paramagnetic phase (TOV
of all modes equal to 1 ⇒ λ ¼ 1) to 8=3 in the low-T

Coulomb phase (TOVof dispersive band modes equal to 0
and TOVof flat band modes equal to 2 ⇒ λ ¼ 1=2) [35] as
seen in Figs. 1(c)–1(e).
Coulomb phase interpretation.—We established above

that, irrespective of the Vij considered, σNSF probes for
each q ∈ ðhhlÞ a mode Ω̂μsμðqÞ constructed from the

components of the flat band eigenvector Ω̂ of the 4 × 4

AðqÞ. All of the (hhl) modes Ω̂μsμðqÞ are energetically
degenerate for VNNSI and VESI, resulting in a flat NSF.
Given that the physics of NNSI and ESI is controlled
entirely by the spectral properties of A, it will prove useful
to adopt a terminology differentiating between modes
constructed from the dispersive band eigenvectors of A
and those constructed from the flat band eigenvectors. To
set up this terminology, we first focus on the long-wave-
length limit describing the coarse-grained Coulomb phase
physics of VNNSI and VESI. In this limit, the pertinent
normal modes of these two V’s are obtained by an
orthonormal change of basis [15,22],

QðqÞ≡ 1

2

X
μ

sμðqÞ; BðqÞ≡
ffiffiffi
3

4

r X
μ

sμðqÞẑμ: ð7Þ

In direct space, Q and B are, respectively, akin to a charge
density and a three-component vector field. The long-
wavelength dispersive band modes are QðqÞ and q̂ · BðqÞ,
which are thermally depopulated at low temperature [22].
The long-wavelength flat band modes are the two remain-
ing components of BðqÞ, which lie in the plane orthogonal
to q̂ (spanned by ŷsc and ẑsc). In a gauge theory like
electromagnetism, the dispersive pair fQðqÞ; q̂ · BðqÞg
would commonly be referred to as “longitudinal” modes
and the flat pair fŷsc · BðqÞ; ẑsc · BðqÞg as “transverse”
modes.
We now extend this terminology to arbitrary q, where

longitudinal modes are those constructed from the dis-
persive band eigenvectors of A, while transverse modes are
those constructed from its flat band eigenvectors of A.
Expressed in this basis, σSF and σNSF take simple forms,

σSF ¼
4

3
hjBðqÞ · ŷscj2i; σNSF ¼

4

3
hjBðqÞ · ẑscj2i: ð8Þ

The modes whose TOVs appear in Eq. (8) are both
transverse modes at long wavelength, which is reflected
in the equal intensity of σSF and σNSF seen in Fig. 1 for
small q. However, for larger wave vectors, the SF intensity
drops to zero at low temperature, indicating that BðqÞ · ŷsc
is a longitudinal mode at these wave vectors. The NSF is
flat throughout ðhhlÞ because Ω̂μsμðqÞ≡ BðqÞ · ẑsc
[appearing in Eqs. (5) and (8), respectively] is a transverse
mode for all q in this plane since Ω̂ is a flat band
eigenvector of AðqÞ. The lesson is that, while the SF
probes both transverse and longitudinal modes, resulting in
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pinch points, the ðhhlÞ NSF probes solely transverse
modes.
In the aforementioned long-wavelength theory of NNSI

[15,16,22] built fromQ and B, the physics is controlled by λ
and a screening length ξ [16] (equivalently, the charge
density), which controls the width of the pinch points
[16]. Since the NSF is blind to the longitudinal modes [ξ
does not appear in Eq. (6)] a calibrated measurement of
the temperature dependence of σNSF could afford a direct
experimental determination of λðTÞ that characterizes the
long-wavelength theory.
Chain correlations.—We now turn to the direct-space

interpretation of the (hhl) modes Ω̂μsμðqÞ probed by the
NSF. First, note that sublattices 3 and 4 lie on L2 “α chains”
running along ½1̄10� [21,54,55] [Fig. 1(a) blue lines],
which form a 2D isosceles triangular lattice perpendicular
to ½1̄10� [54–57]. We define an α chain’s polarization
Pα ≡ L−1=2ðPi∈α siẑiÞ · ẑsc and, for each q ∈ ðhhlÞ, its
Fourier transform PðqÞ≡ L−1P

α Pαe−iq·Rα , where Rα are
the α-chain coordinates in the ½hhl� plane. One obtains [35]

σNSFðqÞ ¼ hjPðqÞj2i ¼ 1

L2

X
α;α0

hPαPα0 ie−iq·ðRα0−RαÞ; ð9Þ

i.e., σNSFðqÞ is the Fourier transform of the chain-chain
correlation function hPαPα0 i. Comparing Eq. (9) with
Eqs. (5) and (8), we see that the transverse mode Ω̂μsμðqÞ
at a given q probed by σNSFðqÞ is the Fourier-transformed
α-chain polarization Ω̂μsμðqÞ ¼

ffiffiffiffiffiffiffiffi
3=4

p
PðqÞ. A geometrical

interpretation of the ðhhlÞ NSF thus follows: trivially,
sublattices 1 and 2 do not contribute because their Ising
moments lie perpendicular to the α chains along which the
neutrons are polarized; thus the NSF isolates the spin
correlations of sublattices 3 and 4. These “3–4” chains are
the support of flat band eigenvectors of A whose direct-space
components alternate in sign along a given chain α and are
zero on all other sites [58]. This is the geometrical origin of
why Ω̂ ∝ ð0; 0; 1;−1Þ is a flat band eigenvector of AðqÞ
for all q ∈ ðhhlÞ (see the Supplemental Material [35]).
The q-independent NSF on the ESI line [Eq. (6)] indicates
that hPαPα0 i ¼ ð4=3λÞδαα0 ; the α chains are uncorrelated
from each other at all temperatures, with the flat σNSF
tracking the intrachain correlations, hP2

αi ¼ ð4=3λÞ. It would
be interesting to investigate how this last result arises order-by-
order in an approximation-free direct-space high-temperature
expansion [59] of the original SI and ESI models.
σNSF off the ESI line.—Contrasting with the previous

discussion, a dispersive σNSF implies nontrivial interchain
correlations, which we now consider. Together, Eqs. (3)–(5)
give

σNSFðqÞ ¼ jΩj2Ω̂μGμνðqÞΩ̂ν; ð10Þ

which yields σNSF ¼ 4
3
½G33ðqÞ − G34ðqÞ�. In Fig. 2, we show

line cuts (solid lines) of G33ðqÞ, G34ðqÞ, and σNSFðqÞ along

ðhh2Þ for four ðJ2; J3aÞ parameter choices at T=J1 ¼ 0.1.
The NNSI case is shown in Fig. 2(a), while Fig. 2(b)
corresponds to a point on the J2 ¼ J3a ESI line, both of
which have flat bands and thus exhibit a flat σNSF.
Conversely, Figs. 2(c) and 2(d) illustrate that, for slight
perturbations off the ESI line weakly lifting the flat band
degeneracy, σNSF departs significantly from flatness [35],
indicating the development of interchain correlations
hPαPα0 i. This demonstrates that theNSFprovides a sensitive
probe of perturbations that lift the original flat band
degeneracy and make the transverse modes dispersive.
To expose how σNSF develops dispersion, we consider

perturbations Vp away from NNSI, V ¼ VNNSI þ Vp, where
Vp is a linear combination of further-neighbor interaction
matrices with energy scale much smaller than J1. From
Eq. (4), expanding λ≡ λ0 þ λp, G satisfies G−1 ¼ G−1

0 þ Σ,
where G0 ≡ ½λ01þ βVNNSI�−1 is the unperturbed correlation
matrix and Σ≡ ½λp1þ βVp� contains the perturbing terms,
yielding an expansion G ¼ G0 − G0ΣG0 þ � � � (see the
Supplemental Material [35] for details).
At low temperature, G0 is proportional to the projector

onto the flat bands of VNNSI [15], making G0ΣG0 the
projection of Σ into the transverse mode subspace. Since Ω̂
is an eigenvector of G0ðqÞ with eigenvalue λ−10 , Eq. (10)
yields to first order

σNSFðqÞ ≈
4

3λ0

�
1 −

1

λ0
Ω̂μΣμνðqÞΩ̂ν

�
: ð11Þ

The first-order correction yields a dispersive contribution to
the NSF, reflecting how Vp causes the (hhl) transverse
modes Ω̂μsμðqÞ to become dispersive. Figures 2(b)–2(d)
compares Eq. (11) (dashed lines) with the exact calculation
(solid lines), demonstrating that Eq. (11) accurately captures
the departure from flatness when perturbing off the ESI line.
NSF of dipolar spin ice.—A natural physically relevant

setting to explore how σNSF acquires dispersion is to
consider a dipolar spin ice (DSI) model in which the

(a) (b) (c) (d)

FIG. 2. Line cuts along ðhh2Þ of the G33ðqÞ and G34ðqÞ
sublattice correlations, as well as σNSFðqÞ, for T=J1 ¼ 0.1, with
ðJ2=J1; J3a=J1Þ ¼ ðaÞ (0, 0), (b) (0.1, 0.1), (c) ð0.001;−0.001Þ,
and (d) ð−0.001; 0.001Þ. Solid lines show the numerically exact
values from Eq. (4), whereas dashed lines show the first-order
perturbative calculation.
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long-range dipolar interactions added to the NNSI model
are treated perturbatively. This is directly relevant to theweak-
moment non-Kramers Pr3þ-based [Pr2ðSn;Hf;ZrÞ2O7]
quantum SI materials [31,60,61] and is also pertinent to
Ho2Ti2O7 [19–21] and Dy2Ti2O7 [62,63] DSI compounds.
We take Vp ¼ JdipD, where D is the dimensionless form of
the dipolar interactionmatrix [35],whichwedecomposeusing
the “projective equivalence” of Ref. [14],D ¼ cP þ Δ. Here,
c is a proportionality constant and P is the projector into the
dispersive band eigenspace of A (the longitudinal mode
subspace) containing the long-range 1=R3 portion of the
interaction.Δ contains small short-range corrections decaying
as 1=R5 [14,35]. The key observation is that PμνðqÞΩ̂ν ¼ 0

because Ω̂ is a flat band eigenvector for q ∈ ðhhlÞ. Therefore,
the leading-order dispersive correction to the originally flat
σNSFðqÞ in Eq. (11) is entirely due to the weak short-range
corrections contained in Δij, giving

σNSFðqÞ ≈
4

3λ0

�
1 −

1

λ0
Ω̂μ½λpδμν þ βJdipΔμνðqÞ�Ω̂ν

�
: ð12Þ

We therefore conclude that the ðhhlÞ NSF of this weak-
moment DSI model is insensitive to the long-range portion of
the interaction contained in P, which encodes the 1=R
Coulomb interaction between monopoles [64]. It is, instead,
sensitive to the dispersion of the transverse modes induced by
theweak lifting of the flat band degeneracy via the interactions
contained in Δij [14]. To illustrate this, we show in Fig. 3 the
experimental NSF of Ho2Ti2O7 [18] compared to σNSFðqÞ
computed using Eq. (12) with βJdip ¼ 0.3 (see the
SupplementalMaterial [35] for details). The qualitative agree-
ment between the perturbative and experimental results is
reasonable because the dispersion in the flat bands of DSI is
very small relative to the dipolar interaction scale Jdip—the
phenomenon of “self-screening” [13,14].
Conclusion.—In this Letter, we considered the problem

of polarized neutron scattering of Ising magnetic moments
on the pyrochlore lattice. We found that the non-spin-flip

neutron scattering cross section in the ðhhlÞ plane directly
probes fluctuations of the flat band modes (i.e. transverse
modes) of the spin-spin interaction matrix. This explains
the origin of the long-noted momentum-independent NSF
of classical extended spin ice systems, in particular,
nearest-neighbor spin ice [18,23–27]. Furthermore, we
showed that the NSF channel serves as a sensitive probe
of perturbations that lift the flat band degeneracy. Crucially,
our results only rely on the moments being Ising, resulting
in the isolation of the α chains and thus the NSF probing
solely transverse modes, suggesting a broad range of
applicability in geometrically frustrated Ising magnets.
Our Letter illustrates that an analysis of σNSF could prove a

fruitful approach to parametrize interactions beyond nearest
neighbor [62,63], quantum fluctuations [25], and lattice strain
[65] in spin ice–like systems. In relation to the former, as
indicated in Figs. 2(c) and 2(d), the shape of the NSF
dispersion reflects whether one is above or below the ESI
line, i.e., whether J2 > J3a or J2 < J3a [35]. Investigation of
theNSF in diluted [34,66] and stuffed spin ice [67] would also
be interesting. Another intriguing line of inquiry is to
characterize the development of nonflat NSF features arising
fromquantum fluctuations in theXXZmodel of quantum spin
ice [68], as observed in quantumMonteCarlo simulations [25]
and attributed to the emergent photon of the deconfined U(1)
gauge theory description of the model [31,69]. It would be
worthwhile to make use of the understanding reached in the
present work to go back to the lattice gauge theory and expose
the underlying mechanism that generates the modulation of
the NSF when the temperature decreases and one enters the
low-temperature quantum regime [25].
Notwithstanding the theoretical lines of inquiry above,

there remain many open questions regarding the dynamics
of spin ice materials [70]. Our results suggest that the use of
polarized inelastic neutron scattering in such compounds
could allow for the differentiation of the dynamics of the
transverse and longitudinal modes [71]. In particular, the
slow timescales of dynamics in classical spin ices at very
low temperatures [70,72–74] may be accessible by apply-
ing polarization analysis to high-resolution backscattering
or spin echo techniques [75], potentially yielding new
insights into their dynamics in this regime.
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