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When Fermi surfaces (FSs) are subject to long-range interactions that are marginal in the renormaliza-
tion-group sense, Landau Fermi liquids are destroyed, but only barely. With the interaction further screened
by particle-hole excitations through one-loop quantum corrections, it has been believed that these marginal
Fermi liquids (MFLs) are described by weakly coupled field theories at low energies. In this Letter, we
point out a possibility in which higher-loop processes qualitatively change the picture through UV-IR
mixing, in which the size of the FS enters as a relevant scale. The UV-IR mixing effect enhances the
coupling at low energies, such that the basin of attraction for the weakly coupled fixed point of a (2þ 1)-
dimensional MFL shrinks to a measure-zero set in the low-energy limit. This UV-IR mixing is caused by
gapless virtual Cooper pairs that spread over the entire FS through marginal long-range interactions. Our
finding signals a possible breakdown of the patch description for the MFL and questions the validity of
using the MFL as the base theory in a controlled scheme for non-Fermi liquids that arise from relevant long-
range interactions.
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Introduction.—Non-Fermi liquids (NFLs) arise ubiqui-
tously when Fermi surfaces (FSs) are coupled to gapless
collective modes that mediate long-range interactions. The
physics of NFLs is central to the strange metallic behavior
and/or unconventional superconductivity in various sys-
tems, including cuprates, heavy-fermion compounds, half
filled Landau level, and pnictides [1–3]. However, under-
standing NFLs has been a long-standing challenge due to
strong quantum fluctuations amplified by abundant gapless
modes near FSs [4–9].
Under renormalization-group (RG) flow,most theories for

(2þ 1)-dimensional NFLs flow to the strong-coupling
regime at low energies, and nonperturbative methods are
required to understand their universal long-distance physics
[10,11]. However, there is a special class of NFLs, marginal
Fermi liquids (MFLs), where interaction effects are relatively
weak, i.e., marginal in the RG sense with logarithmic (log)
perturbative corrections. (In this Letter, the terms “metal,”
“NFL,” and “MFL” may refer to that of either electrons or
some emergent fermions, depending on the context.) If the
marginal interactions are further screened, the long-distance
physics should be captured by weakly coupled theories.
While the MFL was first introduced for cuprates [12], it is
relevant in rather broad contexts. First, metallic states
realized at the half filled Landau level and exotic Mott
transitions may be related to MFLs [13,14]. Second, MFLs
have been used as a foothold to gain a controlled access to
strongly coupled NFLs in an expansion scheme, where the
exponent with which long-range interactions decay in space
is used as a control parameter [15,16].

In NFLs, fermionic quasiparticles are destroyed by
scatterings that are singularly enhanced at small momenta.
If large-momentum scatterings are suppressed strongly
enough, one can understand physical observables that
are local in momentum space (e.g., the single-particle
spectral function) within local patches of FSs that include
the momentum point of interest (see Fig. 1). Although this

FIG. 1. In the patch theory, a FS is partitioned into multiple
patches (∼kF=Λy of them, with kF the Fermi momentum and Λy
the patch size). Ignoring the short-range four-fermion inter-
actions, couplings between modes from different patches are
weak unless they have almost parallel Fermi velocities. In this
case, one can focus on a pair of antipodal patches that have nearly
collinear Fermi velocities.
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patch description becomes ultimately invalid in the pres-
ence of a pairing instability driven by short-range four-
fermion couplings, which is nonlocal in momentum space,
one may hope that the dominant physics in the normal state
can be captured within the patch theory without invoking
the entire FS. So the patch theory [8,9,16–18] has been
widely used to describe a large class of NFLs (see
Refs. [13,14,19,20] for some prominent examples).
In MFLs, however, the validity of the patch theory is

questionable even before taking into account the short-
range four-fermion couplings, because large-momentum
scatterings are only marginally suppressed. If large-
momentum scatterings create significant interpatch cou-
plings, the patch theory fails even for the purpose of
describing observables local in momentum space. In this
case, the size of the FS, a UV parameter, qualitatively
modifies the IR scaling behavior, showcasing UV-IR
mixing.
While such UV-IR mixing does not show up at low

orders in the perturbative expansion [16,18], a systematic
understanding of higher-order effects is still lacking. This
issue is also pertinent to multiple experimentally relevant
problems. First, in the context of quantum Hall physics, it is
debated whether the Halperin-Lee-Read theory [13] and
Son’s recently proposed theory [21] describe the same
universal physics of the composite Fermi liquid (CFL).
Second, in the continuous Mott transitions reported in
κ-ðETÞ2Cu2ðCNÞ3 [22,23] and moiré materials [24,25], the
observed phenomena appear to be compatible with the
predictions of the patch theory [14], but some specific
critical properties seem to disagree [24]. To resolve these
issues, it is crucial to understand the behaviors of the
corresponding MFL theories. Moreover, understanding
higher-order effects in NFLs, in general, may provide
new insight into the nature of quantum phase transitions
associated with sudden jumps of the FS size [26,27] and
deconfined metallic quantum criticality [28–31].
In this Letter, we study the higher-order behaviors of a

theory of N flavors of two-dimensional FSs coupled to a
dynamical U(1) gauge field, whose kinetic energy scales as
k1þϵ
y . For the marginal exponent (ϵ ¼ 0), we indeed find
potential UV-IR mixing in four-loop processes that renorm-
alize the gauge coupling (see Fig. 2), with a strength
logarithmically singular in the FS size. This is caused by
gapless virtual Cooper pairs that manage to explore the
entire FS, assisted by large-momentum scatterings that are
only marginally suppressed.
Model and regularization scheme.—We denote the low-

energy fermion fields near a pair of antipodal patches by
ψ ip, with p ¼ � the patch index and i ¼ 1;…; N the flavor
index. a represents the gauge field (see Fig. 1). Because of
the kinematic constraints, the most important interactions
occur between fermionic modes and the gauge bosons with
momenta nearly perpendicular to their Fermi velocity
[4,17]. The Euclidean action for the patch theory is [16]

S ¼ Sψ þ Sint þ Sa; ð1Þ

where

Sψ ¼
Z

½dk�
X
i;p

ψ†
ipðkÞð−ikτ þ pkx þ k2yÞψ ipðkÞ;

Sint ¼
Z

½dk1�½dk2�
X
i;p

λpaðk1Þψ†
ipðk1 þ k2Þψ ipðk2Þ;

Sa ¼
Z

½dk� N
2e2

jkyj1þϵað−kÞaðkÞ; ð2Þ

with ½dk� ¼ f½dkτdkxdky�=ð2πÞ3g and λ� ¼ �1. The rea-
son for the opposite signs of λ� is because a couples to
the currents of the fermions, and fermions from the two
patches have opposite Fermi velocities. By power counting,
the coupling e2 is marginal (relevant) if ϵ ¼ 0 (ϵ > 0).
Physically, with decreasing ϵ, the fermion-boson coupling
gets weaker at small momenta, but large-momentum
scatterings become stronger, which increases the “risk”
of UV-IR mixing. Below we primarily focus on the
marginal case with ϵ ¼ 0. Note that a large N is still
useful in organizing the calculations when ϵ ¼ 0.
One can introduce two cutoffs. Λ denotes the energy

cutoff [35], and Λy is the cutoff of y momentum. The
former is the usual UV cutoff, while the latter represents the
size of the patch. We take Λ → ∞ for simplicity; i.e., the

(a)

(b)

FIG. 2. Equation (3) comes from these two diagrams, together
with their cousins with both internal fermion loops flipped in
direction, which are not shown here. Note that only when the two
fermion loops in each diagram run in the same direction do they
contribute to double-log divergence. See Sec. III C 2 in the
Supplemental Material [32] for all diagrams at this order, where
(a) and (b) are dubbed Benz diagram and 3-string diagram,
respectively.
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theory is regularized by Λy only. Crucially, Λy also serves
as IR data that measure the number of gapless modes near
the FS, and there is a priori no guarantee that low-energy
observables are insensitive to Λy. If the Λy dependence
cannot be removed in low-energy observables by renorm-
alization, the theory has UV-IR mixing, and the patch
description fails.
UV-IR mixing.—We consider the photon self-energy

ΠðkÞ, which is OðN1Þ to the leading order. To order N0,
ΠðkÞ is finite as Λy → ∞ [9,16], due to a kinematic
constraint that is nevertheless absent at higher orders
[see Eq. (30) of the Supplemental Material [32] or
Ref. [36] ]. At order N−1, by exact calculations we find
a double-log divergence in the diagram in Fig. 2(a):
Π0ðkτ ¼ 0;kyÞ¼ 1

N ðjkyj=e2Þ½ð2α4Þ=3π2�½lnðΛy=kyÞ�2, with
α≡ e2=ð4πÞ (see Sec. III C 3 in the Supplemental
Material [32]). Other diagrams are harder to compute
explicitly. However, under reasonable assumptions, we
argue that the only other net contribution to the double-
log divergence is from Fig. 2(b), whose contribution is also
Π0 at kτ ¼ 0 (see Sec. III C 4 in [32]). Double-log diver-
gences are usually from divergences in subdiagrams, which
can then be canceled by diagrams with counterterms.
However, the present double-log divergences are not due
to this, since the only divergent subdiagram in Fig. 2 is the
three-loop vertex correction, but the corresponding coun-
terterm does not contribute to the renormalization of the
boson kinetic term to order N−1. Taking all diagrams
together (including the ones with counterterms), the total
double-log divergence to order N−1 is

Πðkτ ¼ 0; kyÞ ∼
1

N

jkyj
e2

4α4

3π2

�
ln

�
Λy

ky

��
2

: ð3Þ

To better understand this result, first consider the usual
renormalizable field theories without a FS, e.g., 3þ 1-
dimensional ϕ4 theory. In such theories, given a UV
cutoff Λ, quantities like dΠ=d lnΛ are analytic in the
external momentum k ≪ Λ, since this derivative measures
the contribution of high-energy modes in the energy
window ½Λ;Λþ dΛÞ (see Fig. 3). Consequently, the non-
analyticity in Π can at most take the form of k2 lnðΛ=kÞ,
and the Λ dependence of the results can then be eliminated
by local counterterms, allowing any observable at a scale
k1 ≪ Λ to be expressed solely in terms of renormalized
quantities measured at another scale k2 ≪ Λ, and the IR
physics is insensitive to the UV physics.
However, the present theory has another short-distance

scale Λy, which measures the number of gapless modes
near the FS. Low-energy observables, in general, can
depend on Λy in a sensitive manner. Especially,
dΠ=d lnΛy does not have to be analytic in k (see
Fig. 3). Gapless modes can not only renormalize the
existing nonlocal term through jkyj lnðΛy=jkyjÞ, but also

generate stronger nonanalyticity in the quantum effective
action, such as jkyj lnnðΛy=jkyjÞ with n > 1 [n ¼ 2 in
Eq. (3)]. In this case, theΛy dependence cannot be removed
in low-energy observables through renormalization of the
existing terms (local or not) in the action, signaling UV-IR
mixing.
UV-IR mixing is known to arise in metals. (We note that

UV-IR mixing with different origins is also proposed in
other setups [37–41].) First, the FS size kF, a UV
parameter, becomes relevant at low energies when a critical
boson is coupled with a FS whose dimension is greater
than 1, as a boson can decay into particle-hole pairs along
the “great circle” of FS whose tangent space includes the
boson momentum [42,43]. Second, the FS size is important
in the presence of pairing instabilities driven by short-range
four-fermion interactions, via which Cooper pairs residing
on the FS with zero total momentum can be scattered
throughout the entire FS without violating momentum or
energy conservation [18,44,45].
The origin of the UV-IR mixing we find here is related to

the second one, but different. The contribution in Eq. (3)
comes from virtual Cooper pairs (VCPs), represented by
the two fermion loops that come from opposite patches and
run in the same direction in Fig. 2. Via the marginal long-
range interactions mediated by the gauge field, these VCPs
spread over the entire FS, which enjoys a large phase space
for scattering and can have singular contributions [see
Eq. (86) in the Supplemental Material [32] ]. Indeed, the
double-log divergence disappears if either of the VCPs are
absent (e.g., by taking the fermion loops in Fig. 2 to be in
the same patch and/or run in opposite directions) or large-
momentum scatterings are further suppressed (e.g., by
taking ϵ > 0) [46]. This is reminiscent of the enhanced
quasiparticle decay rate due to VCPs in Fermi liquids [49].
Consequences of UV-IR mixing.—Equation (3) forces us

to view Λy as another “coupling constant” of the theory
[42]. In particular, Λ̃y ≡ Λy=μ plays the role of a relevant
coupling as the size of the FS blows up relative to the
decreasing scale μ. The beta functions of the theory are

Λ

Λ

Λ

Λ

FIG. 3. The gray regions illustrate modes that are integrated out
if we tune Λy in MFL (left) or Λ in a usual field theory without FS
(right). The latter has gapless modes only at a single point in the
momentum space (shown in red), while the former has gapless
modes overlapping with the gray regions. In MFL, ΠðkÞ
calculated at a fixed Λy can have IR singularities stronger
than lnðΛy=kÞ.
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(see Secs. I and II in the Supplemental Material [32] for
details)

dΛ̃y

d ln μ
¼ −Λ̃y;

dα
d ln μ

¼ 2α2

πN
−

8α5

3π2N2
ln Λ̃y: ð4Þ

Let us analyze these beta functions in the weak-coupling
regime with α≲ 1 and low-energy limit with μ ≪ Λy,
together with a large but finiteN. The first term in dα=d ln μ
is the lowest-order term in 1=N and Λ̃y independent.
As the scale μ is lowered, it makes the gauge coupling
decrease logarithmically through screening. If the
initial coupling α0 defined at energy scale μ0 satisfies
ðα30=NÞ lnðΛy=μ0Þ≲ 1, this term dominates and the gauge
coupling flows to zero at low energies. On the other hand,
for ðα30=NÞ lnðΛy=μ0Þ≳ 1, the second term dominates,
which tends to enhance the coupling at low energies.
In this case, we can ignore the first term to the
leading order. Then the gauge coupling grows as
α¼α0f1− ½16=ð3π2N2Þ�α40½ln2ðμ=ΛyÞ− ln2ðμ0=ΛyÞ�g−1=4.
This solution shows a divergence of the gauge coupling
with decreasing μ, although it cannot be trusted in the
strong-coupling regime. For theories defined at scale μ0, the
basin of attraction for the α ¼ 0 fixed point is given by
Bμ0 ≡ fα0jα30 < cN= lnðΛy=μ0Þg, with c an Oð1Þ constant
(see the shaded region in Fig. 4). The salient feature is that
Bμ0 shrinks to a measure-zero set in the low-energy limit
(i.e., μ0 ≪ Λy), due to the scale dependence in the beta
function. The fact that the beta function explicitly depends
on Λy is a hallmark of UV-IR mixing.
In the presence of the UV-IR mixing, the FS size cannot

be dropped in low-energy physical observables. For exam-
ple, the single-fermion spectral function takes the form of
Aðω; k; TÞ ¼ ωΔf½ðω=kzkÞ; ðkk=kz

0
FÞ; ðω=TÞ�, where kF is

the FS size, kk is the distance of k away from the FS, T
is the temperature,Δ, z, and z0 are critical exponents [z0 ¼ 2
from Eq. (3)], and f is a universal function [42]. It is

interesting to test this in CFLs at various filling factors that
can be realized in Chern bands [29].
The UV-IR mixing in MFLs also has implications for the

ϵ-expansion scheme [15,16], which has been used to
approach NFLs with ϵ ¼ 1 from MFLs with ϵ ¼ 0 pertur-
batively in ϵ. To see it, we examine how the UV-IR mixing
in the base theory with ϵ ¼ 0 affects the perturbative ϵ
expansion. In theories with ϵ > 0, the UV-IR mixing
disappears since the diagrams in Fig. 2 are no longer
divergent in Λy, as large-momentum scatterings are further
suppressed. Instead, the double-log in Eq. (3) is translated
to a double pole in ϵ as

Πðkτ ¼ 0; kyÞ∼
1

N

jkyj
ẽ2

8α̃4

π2

×

�
1

27ϵ2
þ 1

9ϵ
lnðμ=jkyjÞþ

1

6
½lnðμ=jkyjÞ�2

�
;

ð5Þ
where ẽ2 ¼ e2μ−ϵ is the dimensionless coupling and
α̃ ¼ ẽ2=ð4πÞ. (See Ref. [50] for a different but related
calculation at ϵ ¼ 1.) Since 1=ϵ poles cannot be absorbed
by terms already present in the action, the naive perturba-
tive expansion appears ill defined. Moreover, this singular
self-energy suggests that ϵ is renormalized to a larger value,
further indicating that the ϵ expansion may break down.
This calls for alternative control schemes for NFLs. See
Refs. [51–53] for the dimensional regularization scheme
that has no UV-IR mixing and Refs. [54–57] for other
proposals.
Summary and discussion.—We provide strong evidence

that a (2þ 1)-dimensional MFL exhibits UV-IR mixing,
caused by virtual Cooper pairs that spread over the entire
FS due to large-momentum scatterings. Our finding sug-
gests the breakdown of the patch theory for MFLs and a
potential issue in the ϵ expansion that uses MFLs as the
base theory for NFLs.
We conclude with a few final remarks. First, the UV-IR

mixing identified in (2þ 1)-dimensional MFLs can be
extended to more general cases. Consider metals with
m-dimensional FS (e.g., a spherical or cylindrical FS has
m ¼ 2 and a Weyl nodal line has m ¼ 1) coupled to a
critical boson whose kinetic energy goes as k1þϵ

y . The
contribution of virtual Cooper pairs to loop corrections
scales as ∼

R ½ðdmkyÞ=ðk1þϵ
y Þ�, which suggests that, for

m ≥ 1þ ϵ, there exist UV divergences associated with
the extended size of FSs, and UV-IR mixing can arise. So
we expect virtual-Cooper-pair-induced UV-IR mixing in
(3þ 1)-dimensional gauge theories with m ¼ 2 and ϵ ¼ 1
(on top of the UV-IR mixing identified in Ref. [42]). This is
relevant to quantum spin liquids [58,59] and mixed-valence
insulators [60]. (Since ϵ ¼ 1 corresponds to the local
kinetic term for gauge boson, we expect that UV-IR mixing
identified here does not originate from the nonanalyticity of
the kinetic term of the gauge boson.)

FIG. 4. The flow of α ¼ e2=ð4πÞ with initial condition α ¼ α0
at μ ¼ μ0. For each μ0, there is a critical value α� ≈ N= lnðΛy=μ0Þ
(the dashed curve): when α0 < α� the gauge coupling flows to
zero at low energies (green), while when α > α� it flows to
infinity (orange).
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Second, our result is obtained within the standard patch
theory. To understand the full consequences of the UV-IR
mixing caused by large-momentum scatterings, one should
consider a general theory that keeps track of how the boson-
fermion coupling is renormalized at large boson momenta.
For this, instead of a coupling constant, one should take
into account a “momentum-dependent coupling function,”
reminiscent of the familiar form factors in the interaction
vertices in various settings [61]. Moreover, the four-
fermion couplings, which should also be described by a
coupling function, are not considered here, but they should,
in principle, be studied on equal footing as the gauge
coupling. Whether there is UV-IR mixing can depend on
the microscopic details of the physical system. What we
have shown is the presence of a UV-IR mixing in systems
where the two effects above are negligible. In the future, it
will be of great interest to understand whether such UV-IR
mixing exists in systems where these effects are significant
and should be incorporated into the theory. In any case, our
results suggest that the physics of MFLs is richer than
originally expected and mandates a qualitative improve-
ment of the current theoretical understanding.
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