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Materials once suffered at high-pressure and high-temperature (HPHT) conditions often exhibit exotic
phenomena that defy conventional wisdom. The behaviors of sulfur dioxide (SO2), one of the archetypal
simple molecules, at HPHT conditions have attracted a great deal of attention due to its relevance to the
S cycle between deep Earth and the atmosphere. Here we report the discovery of an unexpected
disproportionation of SO2 via bond breaking into elemental S and sulfur trioxide (SO3) at HPHT conditions
through a jointly experimental and theoretical study. Measured x-ray diffraction and Raman spectroscopy
data allow us to solve unambiguously the crystal structure (space group R3̄c) of the resultant SO3 phase that
shows an extended framework structure formed by vertex-sharing octahedra SO6. Our findings lead to a
significant extension of the phase diagram of SO2 and suggest that SO2, despite its abundance in Earth’s
atmosphere and ubiquity in other giant planets, is not a stable compound at HPHT conditions relevant to
planetary interiors, providing important implications for elucidating the S chemistry in deep Earth and other
giant planets.
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For simple molecules (e.g., O2, H2S, CO2, NO2, H2O,
NH3, and CH4), a plethora of complex phenomena such
as structural phase transitions, amorphization, dissocia-
tion, metallization, and superconductivity can appear at
high-pressure and high-temperature (HPHT) conditions
[1]. Among them, pressure-induced phase transitions are
most common by accompanying the formation of a
variety of crystal structures that are not accessible at
ambient conditions. Compressed molecular solids are
often known to acquire extended solids with strong
covalent-bonding frameworks and ultimately transform
into ionic phases (e.g., CO2, H2O, NO2, and NH3) [2–11].
On the other hand, unexpected chemical disproportiona-
tion reactions have been observed for certain simple
molecules (e.g., CO, CH4, NO, and H2S) [12–19],
producing materials that sometimes adopt exotic super-
conducting property [20].
As one of the typical simple molecules, SO2 is consid-

ered as an archetypal system. Its p bond and hybridization
properties can be severely affected by HPHT conditions.
Knowledge of these behaviors is vital for understanding
S─O bonding and the structural evolutions of simple
molecules. In addition, SO2 is an important atmospheric
molecule on Earth and outer planets such as Venus [21] and
the Jovian moon Io [22–24], which is produced through

volcanic eruptions [25]. As a result, SO2 is expected to be
constituent of the planetary interiors [26].
At ambient pressure, SO2 crystallizes into an ortho-

rhombic Aba2 structure having four molecules per unit cell
at 143 K [27]. Two high-pressure molecular phases (SO2-II
and SO2-III) have been observed at pressures up to 7.5 GPa
[28]. Upon further compression, a phase transition into an
extended solid of SO2-IV has been observed at 17.5 GPa
[29]. Unfortunately, since there is absence of x-ray dif-
fraction (XRD) data, the crystal structures of these high-
pressure phases (SO2-II, SO2-III, and SO2-IV) are not
known. Very recently, a pressure-induced phase transition
in the amorphous solid from a molecular to a polymeric
phase was reported at 26 GPa [30]. Overall, the previous
studies of SO2 are mainly performed at a relatively low-
pressure and low-temperature regime (below 60 GPa and
room temperature), while the stability range and nature of
SO2 at HPHT conditions remain largely unknown. There is
a fundamental interest for the study at HPHT conditions
relevant to planetary interiors since SO2 is expected to play
a pertinent role in the understanding of the S cycle between
the atmosphere and deep Earth.
Here we have carried out ab initio calculations and HPHT

experiments to establish the phase diagram of compressed
SO2 solids. Unexpectedly, a chemical disproportionation
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reaction of SO2 was discovered at 95.2 GPa and 2700 K,
where SO2 decomposes into the elemental S and sulfur
trioxide SO3. The crystal structure of the resultant high-
pressure phase of SO3 was determined to have a hexagonal
R3̄c structure via in situ synchrotron XRD and Raman
measurements, which is in excellent agreement with our
theoretical prediction. Our discovery has renewed the
fundamental principles that govern the chemistry of SO2

under extreme conditions and substantially extended the
phase diagram of SO2 to HPHT conditions relevant to
planetary interiors.
Our ab initio calculations were performed using density-

functional theory with the Perdew-Burke-Ernzerh general-
ized gradient approximation [31], as implemented in the
VASP code [32]. The plane wave basis set cutoff energy of
900 eV and Monkhorst-Pack [33] Brillouin zone sampling
grid of 2π × 0.03 Å−1 were used to ensure enthalpy
convergence of better than 1 meV=atom. Our calculations
reveal the phase transitions sequence of Aba2 → Pna21 →
Pmc21 [30] at low pressure and 0 K. The Pna21 structure
is a molecular crystal [Fig. 1(a)], whereas the Pmc21
structure is a polymeric phase containing a chain formed
by the vertex-sharing SO3 pyramids [Fig. 1(b)]. Note that
the Pna21 can be viewed as an intermediate structure
between molecular and polymeric crystals, which is stable
at 1.5–15.5 GPa [see Supplemental Material, Fig. S10(b)
[34]]. Upon further compression to 65 GPa, SO2 becomes
thermodynamically unstable with respect to the dissocia-
tion into elemental S and SO3 via the reaction route of
3SO2 → Sþ 2SO3. The hexagonal R3̄c structure of SO3

predicted in an earlier work [35] and our CALYPSO
[36–38] structure-searching simulation [39] is more stable
than the ambient-pressure α phase of SO3 at the pressure of
72 GPa. Unlike the known α phase of SO3 having the

partially polymerized chain structure, R3̄c-SO3 is fully
polymerized into a covalent structure composed of the
vertex-sharing SO6 octahedra, where S atoms are consid-
ered as being sp3-type hybridization [Fig. 1(c)]. The
dynamic stabilities of the predicted structures of
Pna21-SO2, Pmc21-SO2, and R3̄c-SO3 were examined
by the phonon spectrum calculations through the finite
displacement method as implemented in the PHONOPY code
[40]. No imaginary frequencies of the phonon dispersions
for these structures (Fig. S2 [34]) were found, indicating
they are dynamically stable. For further details on the
calculations, see Supplemental Material and Refs. [41–45].
In order to provide more information from a theory

ground to aid for subsequent experimental synthesis, we
further examine vibrational contributions and entropic
effects for the relevant phases and construct the finite-
temperature phase diagram of SO2 using the quasiharmonic
approximation [Fig. 1(d)]. It is found that the estimated
differences of zero-point energy between the reactants
(SO2) and products (R3̄c-SO3, S-IV) are about 0.104
and 0.106 eV=f:u: at 70 and 80 GPa, respectively, giving
a rather small modification on the threshold pressure from
72 to 74 GPa for the disproportionation reaction of SO2 into
S and R3̄c-SO3 at 0 K. However, the threshold pressure is
largely revised by the inclusion of the temperature effect,
and it goes from 65 GPa at 0 K to 88 GPa at 2000 K.
The decomposition of compressed SO2 is driven by

the denser structure packing in SO3 and S solids. Our
calculations show that the decomposition at 74 GPa accepts
volumes of 6.27 Å3=atom for SO3 in the R3̄c structure,
10.76 Å3=atom for the S-IV phase, and 7.70 Å3=atom
for SO2, with a large volume shrinkage of ΔV=V ¼
−12.12% associated with a higher packing efficiency
(see Supplemental Material, Fig. S3 [34]). Consequently,
the pressure-volume term in Gibbs free energy strongly
favors the decomposition of SO2 at high pressure. In
addition, the decomposition of SO2 seems to be intimately
tied to multivalent element speciation of S, whose oxidation
states are changed from þ4 to a mixture of 0 and þ6 via
self-redox reaction under compressions.
The in situ Raman spectra of SO2 over a broad pressure

were investigated at room temperature [Fig. 2(a)]. As
pressure increases, the observed low-frequency modes
(60− 360 cm−1) shift to the higher wave number region
and two new bands located at 515 and 653 cm−1 appear at
21.2 GPa. Under further compression, this phase transition
continues as evidenced by the intensity enhancement of the
newly observed modes around 522 and 658 cm−1, and the
lattice modes and the high-frequency peaks at 1166 and
1234 cm−1 weaken gradually and disappear completely
when the pressure approaches 31.6 GPa. The peak posi-
tions and pressure-induced changes in Raman frequencies
of SO2 at room temperature plotted in Fig. 2(b) show an
excellent agreement with earlier experimental data (see

FIG. 1. The predicted crystal structures of (a) Pna21-SO2,
(b) Pmc21-SO2, and (c) R3̄c-SO3 (c). (d) Thermodynamic phase
diagram of SO2 determined using first-principles density-
functional theory. The gray region presents the geotherm of
Earth from Ref. [46].
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Supplemental Material, Fig. S4 [34]). It is observed that the
phase transition from molecular SO2-III to the extended
solid of SO2-IV phase occurs at nearly 21.2 GPa and room
temperature [29]. The obtained transition is supported by
our ab initio prediction, where a Pmc21 structure is
calculated to be energetically more favorable than the
Pna21 structure above 15.5 GPa. Direct comparison of
the calculated vibrational modes and experimental Raman
spectrum obtained at 54.2 GPa (see Fig. S5 [34]) indicates
that Pmc21-SO2 is a good candidate structure for the
polymeric phase of SO2-IV. Upon further compression,
the linewidth of the peaks increases, but the Raman profiles
exhibit no qualitative changes except that the 546 cm−1

band gradually weakens and indistinguishably merges into
the 522 cm−1 mode around 86 GPa. It is inferred that no
obvious phase transition takes place over the pressure range
from 21.2 to 95.2 GPa at room temperature.
When there is an expectation on the disproportionation

associated with bonds breaking, a large activation barrier is
often needed to be overcome by the use of high temperatures
in order to seek the alternative thermodynamic stable phase
(e.g., CO [47], NO [18], and H2S [14]). Also, guided by our
theory in Fig. 1(d), we have performed HPHT experiments
on SO2 by employing an off-line laser-heating technique in a
diamond anvil cell. High-purity SO2 (99.9%) was loaded
into a sample chamber by means of cryogenic loading. The
samples were compressed to 95.2 GPa and heated up to a
temperature of approximately 2700 K with an off-line pulsed
Nd:YAG laser (a wavelength of 1064 nm) system. The
heating process of SO2 was accomplished by the continu-
ously slow movement of a 10 m laser spot on the samples,
and the total heating time per experimental run was about
1 min. We find via a near-infrared transmittance spectrum
measurement that SO2 samples absorb the Nd:YAG laser in
an efficient way at high pressure (see Supplemental Material,
Fig. S6 [34]). For further details on the experimental
methods see Supplemental Material and Refs. [48–51].
The Raman spectra in a domain of frequencies from 250

to 1300 cm−1 collected before and after laser heating were
shown in Fig. 3(a), together with the Raman active modes
predicted in R3̄c-SO3. It is seen that all the original Raman
peaks of SO2 disappear and six distinct peaks are present
after laser heating. The observed low-frequency modes
(285, 356, 406, and 485 cm−1) are in good agreement with
those of S (phase IV) after laser heating at 92.8 GPa. A
group theory analysis shows that there are four Raman

FIG. 2. Raman spectra of SO2 solid upon compression to
95.2 GPa at room temperature. (a) Selected high-pressure Raman
spectra of solid SO2 measured with exciting wavelength of
633 nm. (b) Pressure dependence of Raman shifts. Different
symbols denote different Raman peaks.

FIG. 3. (a) Raman spectra for SO2 before and after laser heating, and elemental S after heating measured with exciting wavelength of
633 nm, as well as that obtained by simulation of refined structure of R3̄c-SO3. (b) Measured XRD patterns at 95 GPa and calculated
Bragg peaks of R3̄c-SO3 and S-IV phases. The x-ray wavelength is 0.6199 Å. The photographs of the sample taken after laser heating
under combined transmitted (inset I) and reflected (inset II) illumination. The transparent area is the sample morphology before heating.
The regions marked by a red circle are the sample morphology after heating. For a direct comparison of the changes of the samples
before and after heating, only half of the samples were heated, and the other half remained cool.
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active modes (Γ ¼ 3Eg þ A1g) for R3̄c-SO3. Two modes
with frequencies of 576 and 684 cm−1 are consistent withE1

g

and A1g modes predicted in the R3̄c-SO3 phase; however,
the other two Raman modes of E2

g and E3
g are too weak to be

observed. Furthermore, the Raman spectra during decom-
pression of the samples were shown in the Supplemental
Material (Fig. S7) [34]. The characteristic A1g mode of
R3̄c-SO3 phase becomes weaker in intensity with decreasing
pressure and clearly persists to 67.2 GPa (see Fig. S7 [34]), a
threshold pressure for the metastability of R3̄c-SO3.
In order to further confirm the R3̄c-SO3 structure of the

heated samples, the powder XRD patterns obtained from a
synchrotron radiation experiment were collected at 95 GPa
and shown in Fig. 3(b). New diffraction peaks do not
correspond to any SO2 solids. The Rietveld refinements of
the diffraction patterns confirm that these new peaks
correspond to S-IV [52] and R3̄c-SO3 phases, respectively.
More specifically, the observed peaks at 12.38°, 16.94°,
20.73°, and 21.99° match well with the ð1 0 − 2Þ, ð1 0 4Þ,
ð1 1 3Þ, and ð2 0 2Þ crystal planes of R3̄c-SO3, respectively.
The obtained lattice parameters of R3̄c-SO3 at 95 GPa,
a ¼ b ¼ 3.93 Å, and c ¼ 10.71 Å, are close to theoretical
data of a ¼ b ¼ 3.94 and c ¼ 10.74 Å. Note that the XRD
patterns of the heated samples exhibit a nonindexed peak
marked by “×”. Because of the “broad” feature of this peak
(see Supplemental Material, Fig. S8 [34]), we speculate that
it might be derived from a residue of the amorphous phase
of SO2 [30].
Moreover, the sample has undergone a significant color

change from transparency to opaque with a metallic luster
after heating [insets of Fig. 3(b)] and the metallic nature
may be relevant to the decomposed product of metallic
S-IV. The presence of elemental S and SO3 manifested in
the measured XRD data provides a solid confirmation for
the decomposition of compressed SO2 into S-IV and
R3̄c-SO3 as predicted in our calculations [39].
It is known that SO2 can react with various metals

(e.g., Fe [53], Co [54], and Ni [55]) at high temperatures.
Considering that no peaks for Re-containing compounds

exhibit in the measured XRD patterns of the heated
samples, the chemical reaction between Re gasket and
SO2 can be safely excluded in our experiments.
Furthermore, we have also performed a laser-heating
experiment by using Au as an inner gasket to avoid the
direct contact between Re and SO2 (see Supplemental
Material, Fig. S9 [34]). After laser heating, the resultant
Raman spectrum of the samples is identical to the one
obtained without the inner gasket of Au, giving strong
support for the fact that the decomposition of SO2 takes
place no matter whether the samples are in contact with the
Re gasket.
We have examined electronic band structures and density

of states to decipher the electronic properties of R3̄c-SO3

[Fig. 4(a)]. The results reveal that the R3̄c-SO3 is an
insulator with a large band gap of 3.6 eV at 70 GPa and a
continuous widening of band gaps is predicted from 3.6 to
4.2 eV at pressures ranging from 70 to 100 GPa [see
Supplemental Material, Fig. S10(a) [34] ]. This anomalous
behavior of pressure-promoted band gap may be attributed
to the enhanced ionicity of R3̄c-SO3 as evidenced by more
charge transfer from S to O with increasing pressures
[Fig. S10(b) [34] ].
It has long been known that the exchange of S between

the surface and deep Earth, i.e., transporting S to the mantle
via subduction and returning it to the surface by volcanic
degassing, results in a deep global S cycle [26]. Previous
studies suggest that the sulfate minerals ofMSO4 (M ¼ Ca,
Mg, and Fe) [56,57] and Fe2ðSO4Þ3 [58] as important
carriers can transport S from the surface to deep Earth by
the subducting slabs [59,60], while S returns to the surface
by volcanic degassing in the form of S-bearing gases (e.g.,
SO2 and SO3) [61–64]. It has been demonstrated that
the volcanic degassing of SO2 originates from the redox
reactions of S-bearing minerals (e.g., MgSO4 and CaSO4)
[25,39]. However, the source of SO3, released during
volcanic eruptions, remains poorly understood.
Given that the decomposition of the sulfates may be a

viable route for production of SO3, we thus explore the
possibility of the decompositions of the subducted sulfates

FIG. 4. (a) Band structures (left) and partial density of states (right) of R3̄c-SO3 at 70 GPa. (b) Relative enthalpies for sulfates to
decompose into SO3 and pertinent oxides at high pressure.
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of MSO4 (M ¼ Ca, Mg, and Fe) and Fe2ðSO4Þ3 with
respect to oxides (e.g., CaO, MgO, FeO, FeO2, and Fe2O3)
abundant within Earth’s mantle and SO3 as products. (For
details on the calculations, see Supplemental Material and
Refs. [65–74]). We find that, unlike MgSO4 and CaSO4,
decomposition reactions of FeSO4 and Fe2ðSO4Þ3 indeed
occur at 84 and 116 GPa, respectively, corresponding to
pressure conditions at deep Earth’s mantle [Fig. 4(b)]. In
sharp contrast to the mechanism for production of SO2 via
redox reactions with varied oxidation states of S, the
decomposition of subducted sulfates to produce SO3 does
not involve any changes in oxidation states of S. These
findings reveal that the volcanic degassing of SO3 might be
arising from the decompositions of FeSO4 and Fe2ðSO4Þ3.
The production of SO3 by decomposition of subducted
sulfates offers insights for understanding deep Earth
chemical reactions relevant to S cycles inside our planet
and implies that SO3, which was not previously considered,
should be taken into account for the construction of a
realistic model of Earth’s mantle.
The pressure homology rule states that light elements

behave at high pressure, like those in heavier elements from
the same group of the periodic table at lower pressures [75].
For the heavier elements oxides in the VIA group, SeO2 has
a partially polymerized chain structure at pressure up to
20 GPa [76,77], while TeO2 adopts a fully polymerized
covalent structure even at ambient pressure [78,79]. There
is an expectation that SO2 might also have a polymerized
structure at high pressures, in resemblance to those in SeO2

and TeO2. In contrast to these expectations, our findings
unravel the occurrence of an unexpected disproportionation
reaction of SO2 into SO3 and elemental S at high pressure.
In summary, we provided theoretical and experimental

evidence for the occurrence of a chemical disproportionation
reaction of SO2 at HPHT conditions, where SO2 was proven
to decompose into the known S-IV phase and a newly
established polymeric R3̄c phase of SO3. The resulting
phase of SO3 contains vertex-sharing octahedra SO6 units
and exhibits an anomalous behavior of pressure-enhanced
band gap. The occurrence of decomposition of compressed
SO2 is originated from the volume reduction favorable for a
denser structure packing. These findings enrich fundamental
behaviors of compressed simple molecules and create an
extended phase diagram of SO2 at HPHT conditions relevant
to planetary interiors, thereby offering important implica-
tions for the deep S cycle within Earth’s mantle and
elucidating the S chemistry of planetary interiors.
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