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The bound-electron g factor is a stringent tool for tests of the standard model and the search for new
physics. The comparison between an experiment on the g factor of lithiumlike silicon and the two recent
theoretical values revealed the discrepancies of 1.7σ [Glazov et al. Phys. Rev. Lett. 123, 173001 (2019)]
and 5.2σ [Yerokhin et al. Phys. Rev. A 102, 022815 (2020)]. To identify the reason for this disagreement,
we accomplish large-scale high-precision computation of the interelectronic-interaction and many-electron
QED corrections. The calculations are performed within the extended Furry picture of QED, and the
dependence of the final values on the choice of the binding potential is carefully analyzed. As a result, we
significantly improve the agreement between the theory and experiment for the g factor of lithiumlike
silicon. We also report the most accurate theoretical prediction to date for lithiumlike calcium, which
perfectly agrees with the experimental value.
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Introduction.—Over the past decades, the Zeeman effect
in highly charged ions has been a subject of intense
theoretical and experimental investigations. Nowadays,
the bound-electron g factor is measured with a relative
accuracy of a few parts in 1011 in H-like carbon and silicon
ions [1–3]. Impressive theoretical studies [4–22] matched
the precision of these measurements and demonstrated
perfect agreement. Moreover, these joint efforts have led to
the most accurate up-to-date value of the electron mass
[3,23,24]. Furthermore, the present experimental tech-
niques also enable high-precision g-factor measurements
in few-electron ions [25–29]. In particular, in the recent
experiments for Li-like ions, the results with 11 significant
digits are reported [27,28], thus reaching an accuracy
comparable to that for H-like ions.
The unprecedented precision achieved both in experi-

ments and in theory brings the bound-electron g factor to
the category of observables that define our understanding
of fundamental physics. For example, the measurement of
the g-factor isotope shift with Li-like calcium ions [27] has
opened a possibility to test the relativistic nuclear recoil
theory in the presence of magnetic field and paved the way
to probe bound-state QED effects beyond the Furry picture
in the strong-field regime [30,31]. The high-precision
bound-electron g-factor experiments combined with theo-
retical studies are expected to provide an independent
determination of the fine structure constant α [32–34].
Moreover, one can search for the effects beyond the

standard model [35]. While calcium is the heaviest system
measured to date, the most interesting effects, including
new physics, generally grow with the nuclear charge
number Z. Thus, the middle-Z ions primarily serve as a
prototype to verify the theoretical methods, which still need
further development to match the experimental precision
and to realize these fascinating ideas eventually.
The first Penning-trap g-factor measurements with Li-like

ionswere performed for silicon [25] and calcium [27]with an
uncertainty of about 10−9. Recently, the 15-fold improved
experimental value for 28Si11þwas published [28]. Currently,
it is themost accurate g-factor value for the few-electron ions.
Tomatch the experimental precision, amultitude ofQEDand
nuclear effects should be rigorously taken into account in
theory. Themajor difficulty of Li-like systems in comparison
to the H-like ones consists of the many-electron contribu-
tions. The recent progress in the many-electron QED
calculations includes the evaluation of the screened QED
diagrams [36–40], the two-photon-exchange diagrams
[25,39,41,42], and various higher-order effects [28,43,44].
The nuclear recoil effect in Li-like ions was addressed
recently in Refs. [30,31,45]. In Ref. [28], the most accurate
at that time theoretical g-factor value for 28Si11þ was
obtained, gth;2019 ¼ 2.000 889 894 4 ð34Þ, and it was found
to be 1.7σ away from the experimental value gexp;2019 ¼
2.000 889 888 45 ð14Þ presented in the same work. The
improvement was achieved mainly due to the accurate
treatment of the higher-order effects within the perturbation
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theory. The calculations were performedwithin the extended
Furry picture, where the Dirac equation includes an effective
screening potential.
In an attempt to resolve this discrepancy, an independent

evaluation of the screened QED diagrams was undertaken
by Yerokhin et al. [40]. In contrast to Ref. [28], the
calculations were performed within the standard Furry
picture, i.e., based on the Dirac equation with the
Coulomb potential. The higher-order effects were evaluated
within the nonrelativistic quantum electrodynamics
(NRQED) approach to the leading order in αZ. As a result,
a new theoretical value for 28Si11þ was obtained: gth;2020 ¼
2.000 889 896 3 ð15Þ [40]. For both gth;2019 and gth;2020, the
theoretical error bar is determined by the numerical
uncertainty of the calculated contributions and by estimat-
ing the unknown higher-order many-electron QED effects.
Here, we note that even though in the case of the original
Furry picture the higher-order effects are generally more
significant than those in the extended Furry picture, the
corresponding uncertainty suggested in Ref. [40] is twice
smaller than in Ref. [28]. Overall, gth;2019 and gth;2020 are in
fair agreement within the quoted error bars. However, the
theoretical value from Ref. [40] disagrees by about 5.2σ
with experiment and, therefore, the g-factor “puzzle” has
only got worse. Just recently, Yerokhin et al. accomplished
an independent evaluation of the two-photon-exchange
contribution [42] and presented new results for Li-like
silicon and calcium. For silicon, the 3.1σ disagreement
remains, somewhat smaller than before [40]. The calcium
g-factor value differs by 4.2σ from the experimental
value [27].
The screened QED and interelectronic-interaction effects

represent the main challenge for theory. So far, rigorous
evaluation of these contributions has been accomplished
only by two groups. In this Letter, we further scrutinize the
many-electron QED effects to shed light on the persisting
discrepancy. We have performed large-scale QED calcu-
lations in the extended Furry picture for different screening
potentials and found that our present g-factor values are in
fair agreement with experiment for both silicon and
calcium.
Basic theory.—The ground-state g factor of lithiumlike

ion with a spinless nucleus can be written as

g ¼ gð0ÞC þ Δgint þ ΔgQED þ Δgnuc: ð1Þ

Here, gð0ÞC is the lowest-order g-factor value obtained for
Coulomb potential, Δgint is the interelectronic-interaction
correction, ΔgQED is the QED correction, and Δgnuc stands
for the nuclear recoil and nuclear polarization effects.
Below, we focus on Δgint and ΔgQED. Each of these
contributions can be expanded within the bound-state
QED perturbation theory,

Δg ¼ Δgð1Þ þ Δgð2Þ þ Δgð3þÞ; ð2Þ

where the superscript i refers to the ith order in α, and
Δgð3þÞ includes all the higher orders. So far, only three
terms have been rigorously evaluated, i.e., to all orders in
αZ without any further approximations: one-photon

exchange Δgð1Þint , two-photon exchange Δgð2Þint , and one-

electron self-energy and vacuum polarization Δgð1ÞQED.

The second-order QED correction Δgð2ÞQED can be split into

two parts: one-electron two-loop QED term Δgð2ÞQED-1e and

many-electron (screened) QED term Δgð2ÞQED-me. While the
evaluation of the former is still in progress [18,46,47], the
latter was independently computed in Refs. [36,37,40].
The terms that are not yet known to all orders in αZ are
evaluated approximately, e.g., within the αZ expansion or
by employing some effective operators. We present these
terms in the following form:

ΔgðiÞ ¼ ΔgðiÞL þ ΔgðiÞH ; ð3Þ

where ΔgðiÞL denotes the leading-order part that is taken into

account, and ΔgðiÞH is the presently unknown higher-order
part whose value needs estimation to ascribe the uncertainty

to ΔgðiÞ. Note that the leading-order terms ΔgðiÞL can be
defined in different ways depending on the calculation
method, e.g.,NRQEDor theBreit approximation. In general,

the higher-order part ΔgðiÞH is suppressed by the factor ðαZÞ2
in comparison toΔgðiÞL . Since the rigorous treatment ofΔgðiÞ
is presently limited by the second order, the higher-order
terms are evaluated approximately, i.e., including only the

Δgð3þÞ
L part. This can be accomplished via the NRQED

approach [43], by employing the configuration interaction
method [48,49], or within the recursive perturbation
theory [28,50] in the Breit approximation. Presently, the
theoretical accuracy is mainly limited by the missing higher-

order contributions Δgð3þÞ
H , which can be estimated in

several ways. The first option is to use the higher-order term
from the previous order of the perturbation theory:

(i) Δgð3þÞ
H ≃ Δgð2ÞH =Z. The second option, in contrary, is

based purely on the value of the leading-order term from the

sameorderofperturbation theory: (ii)Δgð3þÞ
H ≃ Δgð3þÞ

L ðαZÞ2.
Finally, the third method combines both of these

schemes: (iii) Δgð3þÞ
H ≃ Δgð2ÞH ðΔgð3þÞ

L =Δgð2ÞL Þ.
The higher-order contribution Δgð3þÞ including the

presently unknown partΔgð3þÞ
H can be significantly reduced

by introducing an effective local screening potential in the
Dirac equation, the so-called extended Furry picture [51].
The perturbation series is rearranged so that the dominant
part of each order is transferred to the lower orders. While
each order individually depends on the choice of the
screening potential, the total result should be potential

independent. Since the higher-order part Δgð3þÞ
H is missing
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at present, the difference between the total values obtained
with different screening potentials allows us to estimate the

magnitude of Δgð3þÞ
H . As in our previous works, we employ

the following screening potentials: core-Hartree (CH),
Kohn-Sham (KS), Dirac-Hartree (DH), and Dirac-Slater
(DS) [51,52].
Interelectronic interaction.—The first-order correction

Δgð1Þint is represented by the one-photon-exchange diagrams,
and its calculation is rather straightforward [53]. The

next-order contribution Δgð2Þint developed previously in
Refs. [39,41,54] corresponds to the two-photon-exchange

diagrams. Finally, Δgð3þÞ
int;L is calculated by the recursive

perturbation theory [28,50,54] within the Breit approxima-

tion. For computational details on Δgð2Þint and Δg
ð3þÞ
int;L , see the

Supplemental Material [55], which includes Refs. [56–60].
Table I presents the results obtained for the interelec-

tronic-interaction correction for Si11þ and Ca17þ ions.
The zeroth-order value obtained in the screening potential

minus the Coulomb value (gð0Þ − gð0ÞC ) is an important
contribution to Δgint in the extended Furry picture.

The results for the two-photon exchange are compared
to the corresponding results from Refs. [39,42]. As one can
see, our values are one order of magnitude more accurate
than those of Ref. [39], while for the Coulomb potential, the
marginal agreement is found with Ref. [42]. Our result for

the third- and higher-order correction Δgð3þÞ
int;L obtained

within the Breit approximation agrees well with the results
of Refs. [42,43] obtained within the NRQED approach for
the Coulomb potential.
Before proceeding to the total results, we consider the

uncertainty of the presently unknown higher-order term

Δgð3þÞ
int;H. For the silicon ion and the Coulomb potential, the

three above-mentioned methods for its estimation yield
(i) 0.0037, (ii) 0.0013, and (iii) 0.0008 in units of 10−6.
To select the appropriate method, we adopt the following
reasoning. Once Δgint is calculated rigorously, the total
results should be the same for any binding potential.
Hence, the present deviations between the Coulomb, CH,

KS, DH, and DS results are due to Δgð3þÞ
int;H. Thus, we choose

the first (largest) uncertainty multiplied by a factor of 2 to

TABLE I. Interelectronic-interaction contributions Δgint to the ground-state g factor of Li-like silicon and calcium for different
potentials: Coulomb, core-Hartree (CH), Kohn-Sham (KS), Dirac-Hartree (DH), and Dirac-Slater (DS), in units of 10−6.

Coulomb CH KS DH DS

Z ¼ 14

gð0Þ − gð0ÞC
348.2661 341.3682 353.1638 329.1102

Δgð1Þint
321.5903 −33.5491 −25.0951 −39.2815 −11.7598

Δgð2Þint
−6.8782ð1Þ 0.1362(1) −1.4838ð1Þ 1.1237(1) −2.5910ð1Þ
−6.8787ð1Þa 0.137b

Δgð3þÞ
int;L 0.0934(21) −0.0443ð10Þ 0.0202(12) −0.1952ð18Þ 0.0505(12)

0.0942(4)c −0.046ð6Þb

Δgð3þÞ
int;H 0.0000(74) 0.0000(14) 0.0000(18) 0.0000(12) 0.0000(20)

0.0000(14)a

Total 314.8055(77) 314.8089(17) 314.8095(22) 314.8107(22) 314.8099(23)
314.8058(15)a

Z ¼ 20

gð0Þ − gð0ÞC
505.2339 494.1961 513.4290 475.2654

Δgð1Þint
461.1479 −51.0429 −38.3914 −60.1565 −18.3166

Δgð2Þint
−6.9338ð1Þ 0.1291(1) −1.5297ð1Þ 1.1550(1) −2.6958ð1Þ
−6.9341ð3Þa 0.129b

Δgð3þÞ
int;L 0.0661(17) −0.0300ð8Þ 0.0155(12) −0.1359ð13Þ 0.0388(13)

0.0695(12)c

Δgð3þÞ
int;H 0.0000(108) 0.0000(24) 0.0000(20) 0.0000(20) 0.0000(30)

0.0000(22)a

Total 454.2802(109) 454.2902(25) 454.2905(24) 454.2915(24) 454.2918(33)
454.2834(25)a

aYerokhin et al. [42].
bVolotka et al. [39].
cYerokhin et al. [43].
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provide the overlapping of the results. At the same time, the
authors of Refs. [42,43] used the smallest uncertainty (third
choice) multiplied by 1.5 [43] and by 2 [42]. As one can see
from the table, their total Coulomb result does not overlap
with our values presented for other potentials, both for silicon
and calcium.
Finally, we average our total values over four screening

potentials and obtain the interelectronic-interaction correc-
tion 314.8098ð22Þ × 10−6 for silicon and 454.2910ð24Þ ×
10−6 for calcium.
QED corrections.—The QED corrections are repre-

sented by the self-energy and vacuum polarization dia-
grams in the presence of an external magnetic field. The
computation of the first-order diagrams is well established
and reported, e.g., in Refs. [4–6,12,13,16,20,44,49,52].
The second-order contribution Δgð2ÞQED comprises the one-

electron part Δgð2ÞQED-1e (two-loop QED) and the many-

electron part Δgð2ÞQED-me (screened QED). The formal
expressions for the screened QED contributions can be
found in Refs. [36–39]. Here, we improve the accuracy of

the Δgð2ÞQED-me by refining the numerical procedure; see
Supplemental Material [55] for details.
So far, all the remaining contributions are known

only within some approximation. The one-electron terms

Δgð2ÞQED-1e and Δgð3þÞ
QED-1e are evaluated within the αZ

expansion [14,15,17–19,21,22,61], and the higher-order

many-electron QED correction Δgð3þÞ
QED-me;L is calculated

within the recursive perturbation theory [28,50]; see
Supplemental Material [55] for details.
In Table II, the results for the QED corrections are

presented, obtained with all five binding potentials for both
Si11þ and Ca17þ ions. For the Coulomb potential, we rely
on the results of Refs. [40,43]; these values are given in the
second column. In the third to sixth columns, we present
the results obtained in this Letter. As seen from this table,
our total values obtained with different screening potentials
are close to each other and overlap within their uncertain-
ties. The total uncertainty is determined by the numerical

error in Δgð2ÞQED-me and by the estimation of the higher-order

effects Δgð3þÞ
QED-me;H. The latter is assessed as the largest

value out of three possible estimations; see the discussion

above concerning theΔgð3þÞ
int;H. We note that in Refs. [40,43],

the uncertainty was estimated similarly, and still, there is a
significant discrepancy between the Coulomb result and the
total results for all screening potentials. The reason for this

discrepancy can be the calculation of the termΔgð2ÞQED-me. As
one can see from Table II, its contribution for the Coulomb
potential is much larger than for the screening potentials,
and a relatively small shift in its value could lead to an
agreement between the results.
Finally, we average over all the screening potentials

and report our final values for the QED correction:

TABLE II. QED corrections ΔgQED to the ground-state g factor of Li-like silicon and calcium for different potentials: Coulomb, core-
Hartree (CH), Kohn-Sham (KS), Dirac-Hartree (DH), and Dirac-Slater (DS), in units of 10−6. In the case of the Coulomb potential, the
values are taken from Refs. [40,42].

Coulomba CH KS DH DS

Z ¼ 14

Δgð1ÞQED 2324.0439 2323.8100 2323.8106 2323.8089 2323.8227

Δgð2ÞQED-1e −3.5463 −3.5460 −3.5460 −3.5460 −3.5460

Δgð2ÞQED-me −0.2460ð6Þ −0.0074ð17Þ −0.0087ð17Þ −0.0064ð16Þ −0.0216ð20Þ
Δgð3þÞ

QED-1e 0.0295 0.0295 0.0295 0.0295 0.0295

Δgð3þÞ
QED-me;L 0.0099 −0.0003 0.0003 −0.0004 0.0009

Δgð3þÞ
QED-me;H 0.0000(6) 0.0000 0.0000(2) 0.0000(1) 0.0000(1)

Total 2320.2910(8) 2320.2858(17) 2320.2857(17) 2320.2856(16) 2320.2855(20)

Z ¼ 20

Δgð1ÞQED 2325.5544 2325.2019 2325.1985 2325.2025 2325.2211

Δgð2ÞQED-1e −3.5490ð3Þ −3.5484ð3Þ −3.5484ð3Þ −3.5484ð3Þ −3.5485ð3Þ
Δgð2ÞQED-me −0.3675ð6Þ −0.0220ð17Þ −0.0199ð17Þ −0.0228ð15Þ −0.0438ð20Þ
Δgð3þÞ

QED-1e 0.0295 0.0295 0.0295 0.0295 0.0295

Δgð3þÞ
QED-me;L 0.0105 −0.0003 0.0003 −0.0004 0.0010

Δgð3þÞ
QED-me;H 0.0000(12) 0.0000(4) 0.0000 0.0000(7) 0.0000(6)

Total 2321.6779(13) 2321.6607(18) 2321.6600(17) 2321.6604(17) 2321.6593(21)
aYerokhin et al. [40,42].
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2320.2857ð17Þ × 10−6 for silicon and 2321.6601ð17Þ ×
10−6 for calcium.
Total results and conclusion.—In Table III, we summa-

rize all the theoretical contributions to the g factor of Li-like
28Si11þ and 40Ca17þ ions and compare these results with the
previously reported theoretical and experimental data. In
addition to the corrections Δgint and ΔgQED evaluated in
this Letter, we also use the nuclear recoil contributions from
Refs. [30,45]. The nuclear polarization effect is negligible
for the ions under consideration. As seen from Table III, the
total uncertainty is still determined by the interelectronic-
interaction and QED corrections. In Fig. 1, the present and
previously published theoretical and experimental results
from Refs. [25,27,28,40,42] are depicted together. In
comparison with our previous work [28], the result for
silicon is more accurate, and it is closer to the experimental
value. Comparison with Yerokhin et al. [42] shows that for
28Si11þ, the results agree within the given uncertainty, while
for 40Ca17þ, there is a discrepancy of 2.6σ. We should
underline that the individual contributions Δgint and ΔgQED
disagree even stronger. However, these differences partially
cancel out each other. The results of Yerokhin et al. [42]
differ from the experimental values by 3.1σ for silicon and
by 4.2σ for calcium. Meanwhile, our results are much
closer to the measurements: 1.4σ and 0.6σ deviation,
respectively. We believe that the deviations found in
Ref. [42] are due to the underestimated uncertainty of
the interelectronic-interaction contribution and a possible
issue with their calculation of the screened QED term.
To further improve the accuracy of the total theoretical

value of the g factor, two-loop many-electron diagrams are
to be rigorously evaluated, namely, the three-photon

exchange and the two-photon exchange with a self-energy
loop.
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