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Is a spontaneous perpetual reversal of the arrow of time possible? The out-of-time-ordered correlator
(OTOC) is a standard measure of irreversibility, quantum scrambling, and the arrow of time. The question
may be thus formulated more precisely and conveniently: can spatially ordered perpetual OTOC
oscillations exist in many-body systems? Here we give a rigorous lower bound on the amplitude of
OTOC oscillations in terms of a strictly local dynamical algebra allowing for identification of systems that
are out-of-time-ordered (OTO) crystals. While OTOC oscillations are possible for few-body systems, due
to the spatial order requirement OTO crystals cannot be achieved by effective single or few body dynamics,
e.g., a pendulum or a condensate. Rather they signal perpetual motion of quantum scrambling. It is likewise
shown that if a Hamiltonian satisfies this novel algebra, it has an exponentially large number of local
invariant subspaces, i.e., Hilbert space fragmentation. Crucially, the algebra, and hence the OTO crystal, are
stable to local unitary and dissipative perturbations. A Creutz ladder is shown to be an OTO crystal, which
thus perpetually reverses its arrow of time.
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Introduction.—A broken egg cannot unbreak itself, even
though we may expend energy and produce heat to collect
the pieces and mend it. This simple notion is an intuitive
manifestation of the arrow of time. But can systems that are
similar to eggs that spontaneously unbreak themselves
exist? To answer this question we must turn to fundamental
quantum mechanical consideration. More specifically, the
question can be made more precise by studying the out-of-
time-ordered correlation function (OTOC) that quantifies
how much quantum information is lost (scrambled) in a
many-body system. This quantity is a standard measure of
the directionality of time [1] and represents precisely the
loss of information directly linked with Rényi entropy
growth [2]. A system with persistently oscillating OTOC
would thus arguably persistently and spontaneously reverse
its own arrow of time. Such behavior would go far beyond
emergent persistent single (or few) body motion, e.g., a
planet orbiting a star, or related limit cycle behavior
operating without time-periodic scrambling [3].
All time crystals, continuous [4–6], driven [7–10],

dissipative [11–19], and boundary [20–24] are character-
ized by remarkable persistent oscillations of single or few
body observables (and accompanying notions of continu-
ous or discrete time translation symmetry breaking). By
displaying nontrivial deterministic persistent dynamics,
called nonstationary dynamics [11], time crystals seem-
ingly violate basic ideas in quantum thermalization [25].
Likewise, other systems, e.g., those with quantum scars
[26–30], and others [31–34], also display nonstationary
dynamics and have attracted lots of attention recently.
Motivated by the above considerations, in this Letter we

define time-independent undriven systems that have stable

nontrivially spatially dependent perpetual oscillations of
the OTOC, with the OTOC becoming finite throughout the
system, to be out-of-time ordered crystals (OTO crystals).
Such spatially ordered dynamics of the OTOC can never be
realized by any system with emerging effective single or
few-body dynamics. We prove the existence of OTO
crystals by providing a rigorous lower bound on the
amplitude of oscillations of the OTOC in terms of a novel
strictly dynamical symmetry algebra [35]. OTO crystals go
far beyond standard time crystals because their oscillations
signal a genuine reversal of scrambling (like an egg
unbreaking itself) and entanglement spreading, rather than
long-lived low friction motion of possibly effectively single
body systems. This is to be contrasted with other notions of
time crystals that are defined using local observables. OTO
crystals do not violate the second law of thermodynamics.
One may in fact think of an isolated many-body system
acting as a bath for its own local degrees of freedom and
imagine a possible fluctuation theorem for it [36], but any
such theorem will not forbid either fluctuations or oscil-
lations of entropy. In particular, OTOC oscillations imply
oscillations in Rényi entropy via Ref. [2].
Remarkably, due to this novel strictly local dynamical

algebra, such OTO crystals are completely stable to local
unitary and even dissipative perturbations making the OTO
crystal phase reasonably free from fine-tuning. This novel
algebra goes beyond previously introduced dynamical
symmetries [11] that in general do not form such an
algebra. Moreover, this strictly local dynamical algebra
is shown to directly imply that a Hamiltonian satisfying it
has an exponentially large number of invariant local
subspaces, i.e., Hilbert space fragmentation [37–42]. In
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contrast to standard Hilbert space fragmentation, we call
this local Hilbert space fragmentation [43,44], because the
standard case is not seemingly due to such a structure. We
will demonstrate all these principles by studying a spin-1=2
XYZ Creutz ladder that is shown to be an OTO crystal.
Finally, we argue that Hilbert space fragmentation by itself
is not sufficient to guarantee perpetual oscillations of
observables or OTOCs.
Out-of-time ordered crystals.—We will focus on locally

interacting lattice systems with Hamiltonians acting on
some number of sites N such that the full Hilbert space
is dN dimensional with d being the dimension of one
site. These may be written as H ¼ P

jx−yj¼Λ hx;y, where the
distance between the sites x, y Λ is finite. A strictly local
operator is Bx ¼ bx;yjjx−yj¼Λ because it acts nontrivially on
only a finite number of neighboring sites (between x and y).
In order to proceed a useful concept will be dynamical

symmetries [11], which have been successfully applied
for calculating dynamics of various nonstationary systems.
Dynamical symmetries are extensive operators A satisfying
½H;A� ¼ ωA. Systems for which this theory has been
applied include isolated time crystals [45], Floquet
time crystals [46–48], dissipative time crystals [11,12,49],
synchronization [11,50,51], and, when further extended,
quantummany-body scars (e.g., Refs. [52–57]). Dynamical
symmetries, which should not be confused with those of the
same name in classical physics [58] and nuclear physics
[59], are generalizations of spectrum generating algebras
[60] to the space of local or extensive operators. Instead of
extensive, here we will assume strictly local dynamical
symmetries (in the sense above).
Let us now precisely define an out-of-time ordered

crystal based on generalized out-of-time-ordered correla-
tion functions,

CWxVy
ðt1; t2Þ ¼ −h½Wxðt1Þ; Vyð0Þ�½Wxðt2Þ; Vyð0Þ�iβ;

for some strictly local observables Wx and Vx. Here the
average is taken over the equilibrium state h•iβ ¼ tr½e−βH=
tr½e−βH�•�. Intuitively, the OTOC quantifies information
propagation from observable W at point x to V at point y
at times t1, t2. Clearly, if the system is decoupled between
site x and y, then CWxVy

ðt1; t2Þ ¼ 0. Generic behavior for
systems with finite local Hilbert spaces is saturation to some
maximum constant value [61] for finite jx − yj in finite t1, t2.
This motivates the definition of OTO crystals as those

systems for which we have persistent oscillations at some
frequencies ω1;2 ≠ 0 for some observables Wx and Vy, i.e.,
the OTOC spectral function at frequencies ω1;2 is

FWxVy
ðω1;ω2Þ

¼ lim
T→∞

�
�
�
�
1

T2

Z
T

0

dt1

Z
T

0

dt2eiω1t1þiω2t2CWxVy
ðt1; t2Þ

�
�
�
�> 0;

ð1Þ

so that for all Wx, Wy with finite jx − yj there are some
finite times t1, t2 for which CWxVy

ðt1; t2Þ ≠ 0, and the
number (or more generally measure) of ω1;2 for which
FWxVy

ðω1;ω2Þ is finite (nonzero) grows with distance
jx − yj. The latter formal criterion means that the timescales
of the oscillations depend on the length scales, as expected
from an interacting many-body effect because more
frequencies enter at different distances. Moreover, we
require that this property is stable to generic local pertur-
bations, both dissipative and unitary.
The spatial modulation criterion of FWxVy

ðω1;ω2Þ can
never be met by a noninteracting system or a disconnected
collection of finite systems because in those cases the
OTOCwould be identically 0 for at least someWx,Wy. The
criteria, although at first glance rather formal, actually
imply our desired requirement that oscillations in the
OTOC indicate a perpetual increase and decrease of how
much the quantum information is “scrambled” throughout
the system [62–64]. The stability criteria eliminate inte-
grable systems, and ensures that the OTO crystal phase is
not too fine-tuned. It should be, however, contrasted with
discrete time crystals [7,8,65] that are stable to generic
extensive perturbations. Our very strict criteria thus likely
provide for the most similar behavior to perpetual motion
without violating the second law.
A sufficient criteria for persistent oscillations in the

OTOC (1) is a simple closure condition given in Ref. [66].
To check the OTO crystal criterion it is sufficient to only
give the lower bound in case ω1 ¼ −ω2 ¼ ω, which we call
FWVðx; y;ωÞ. In that case a novel OTOC spectral function
lower bound is

FWVðx; y;ωÞ ≥ A†BA; ð2Þ

where the vector,

Ak ¼ −2
X

m;fz¼1;2g
ð−1Þmδω;ωkm;z

e−βðδz;2ωk−δz;1ωkm;zÞ

× ½hWxDk;m;ziβ�;

with the crucial closure condition
P

m Dk;m;1 ¼ VyA
†
k,P

m Dk;m;2 ¼ A†
kVy, ½H;Dk;m;z� ¼ ωkm;zDk;m;z, and δ is

the delta function and k labels the distinct dynamical
symmetries. This closure condition states that overlap with
dynamical symmetries is not enough for OTOC oscillations
of observables Vy. Vy must close under multiplication with
a strictly dynamical symmetry Ak into another set of
dynamical symmetries Dk;m;z. The matrix Bk;j ¼ hA†

kAjiβ
is Hermitian. The expression is seemingly complicated, but
is intuitive. It says that the bound is 0 if Wx has the same
overlap with VyA

†
k and A

†
kVy. This immediately implies that

it is 0 for noninteracting systems, as needed, and implies
that Ak needs to be an operator that is genuinely many body,
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i.e., connecting x and y beyond the disconnected correlator
level. This is an algebraic manifestation of the spatial
modulation requirement above. The expression simplifies
considerably at infinite temperature β ¼ 0.
By construction, strictly local dynamical symmetries

commute with any operator that is outside their support,
i.e., ½Ak; X� ¼ 0, if X acts trivially on the support of Ak Λ.
Therefore, their existence is stable to any such local
perturbation whether dissipative or unitary. However,
remarkably, further stability is also possible, as we will
see later in the example.
Fragmentation, frustration, and strictly local dynamical

symmetries.—Before moving on to the example, let us
discuss the connection to fragmentation. Hilbert space
fragmentation [39] is characterized by decomposition of
the Hamiltonian into an exponential number of spatially
disconnected invariant subspaces. The dimensions of these
subspaces may range from finite to those whose size grows
exponentially with the system size. Consider the influence
of this on the time evolution of a local observable hOðx; tÞi
in a large, but finite system,

hOðx; tÞi ¼
X

j;k

eitðEj−EkÞhEjjOxjEkihψ jEjihψ jEki�;

where HjEki ¼ EkjEki and we have assumed that the
Hamiltonian is block diagonalized. If the blocks do not
have special structure, an initial state will connect all
blocks for generic observables. Even if the initial state is
contained in only one exponentially large block, one may
still invoke eigenstate dephasing [67] within the block itself
that will lead to relaxation. If the block is finite, then
dephasing is not possible inside the block. However,
eigenstate thermalization which states that off-diagonal
terms hEjjOxjEki; j ≠ k, will be exponentially suppressed
in system size, implies generically thermalization and
relaxation even for finite blocks.
If, however, the subspaces are local, i.e., there is a

projector Pn
x to a necessarily finite eigenspace jEni, which

is strictly local, then clearly this immediately implies the
existence of a strictly local conservation law ½H;Pn

x � ¼ 0,
rendering the system nonergodic. This we call local
fragmentation.
Importantly, this alone is not sufficient to guarantee

persistent oscillations because the eigenspace may be
degenerate (e.g., due to flat bands [68–71]). If the eigen-
space is not degenerate, then operators of the form Ax ¼
1 ⊗ jEjihEkj ⊗ 1 are strictly local dynamical symmetries
satisfying ½H;Ax� ¼ ðEj − EkÞAx [35]. The 1 denotes the
rest of the system on which the operator acts trivially,
which, for future purposes of studying the Creutz ladder,
we split into a left and right part. By previous arguments
[45,46], the existence of such operators implies persistent
oscillations of observables. Conversely, if there exists a
strictly local dynamical symmetry Ax, there is a strictly

local conservation law Qx ¼ ½Ax; A
†
x�, that may be diagon-

alized. If Qx exists for a number of x that is a finite fraction
of the volume, then fragmentation into local subspaces
happens. However, in true fragmentation such subspaces
are not in general local. Therefore, it is useful to check
whether a fragmented model has dynamical symmetries, as
exact results are then possible for quenches [45], correla-
tion functions [45,46] and, as we shall see here, OTOCs.
Finally, similarity between fragmentation and strictly local
weak symmetries [72] has also been noted for open
quantum systems [73].
Local fragmentation has been associated with frustration

in Ref. [43]. However, frustration is not needed for local
fragmentation. In fact, what is sufficient is the existence of
a strictly local conservation law Rx (not to be confused
from the one we called Qx) that has a nondegenerate
subspace. From now on we will include all conservation
laws Qx into the set of dynamical symmetries Ax because
they are special cases of dynamical symmetries with
frequency 0.
Example: Spin-1=2 XYZ Creutz ladder.—The spin-1=2

XYZ Creutz ladder exhibits local fragmentation. It is given
by the Hamiltonian

H¼ J
X

x;α

Δαsαx;1s
α
x;2þΔ0

αðsαx;1þ sαx;2Þðsαxþ1;1þ sαxþ1;2Þ; ð3Þ

where sαx;y, α ¼ x, y, and z is a spin-1=2 Pauli matrix acting
on the site indexed by the rung x ¼ 1…N and leg y ¼ 1, 2
(see Fig. 1).
The model is not frustrated, but has a strictly local

reflection symmetry Rx on each rung x. Crucially, the −1
subspace of this operator is not degenerate, with projector
Px ¼ 12x−1 ⊗ ðj↑↓i− j↓↑iÞðh↑↓j− h↓↑ jÞ⊗ 12N−x and 1n
being the n × n identity matrix. Take any 2M—site
subsystem ΛM;x (M neighboring rungs to the right of

rung x) with Hamiltonian HðMÞ
x . It is easy to see

due to the aforementioned conservation of Px and the
trivial topology of the ladder, any operator of the form

AðMÞ
nm ðxÞ ¼ PxjniM−2hmjM−2PxþM−1 with HðMÞÞjkiM ¼

EkjkiM is a strictly local dynamical symmetry with

FIG. 1. The spin-1=2 XYZ Cruetz ladder with Δα (yellow) and
Δ0

α (pink) interactions. The model is reflection symmetric along

each rung x. Strictly local dynamical symmetries AðMÞ
nm ðxÞ contain

projectors Px=PxþM−1 on their boundaries defined in the text.
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½H;AðMÞ
nm ðxÞ� ¼ ðEðMÞ

n − EðMÞ
m ÞAðMÞ

nm ðxÞ. Note the existence
of a strictly local symmetry Rx with nondegenerate sub-
space is neither necessary [74] nor sufficient [35] to obtain
strictly local dynamical symmetries.
Importantly, the existence of dynamical symmetries

immediately implies that observables do not relax, even
at infinite temperatures and for quenches from generic
initial states. This means that the system has a stronger
property than quantum many-body scarring (cf. Ref. [75]).
It also implies the existence of l-bits (or strictly local

conservation laws) ½AðMÞ
nm ðxÞ; AðM0Þ

m0n0 ðyÞ� for ωðMÞ
mn ¼ ωðM0Þ

m0n0

with ωðMÞ
mn ¼ EðMÞ

m − EðMÞ
n . These generalize the ones stud-

ied in Ref. [71] and split the system along −1 sectors.
We may also easily apply the bound (2) to an observable

Vy by picking a subsystem ofM sites and writing Vy in the

eigenbasis of HðMÞ
x . Focusing only on one choice of HðMÞ

z

acting nontrivially only on ΛM;z at infinite temperature

β ¼ 0 the lower bound F ðM;zÞ
WV ðx; y;ωÞ takes the compact

form (using orthonormality of the eigenstates of HðMÞ
z ),

F ðM;zÞ
WV ðx; y;ωÞ

¼ 4
X̃

m;n

�
�
�
�

X̃

k;j
vkjtrfWx½AðMÞ

nj ðzÞ − AðMÞ
km ðzÞ�g

�
�
�
�

2

; ð4Þ

with vkj ¼ trðVyAjkÞ being chosen to have the same phase,

and where the sums
P̃

go over only those n, j and j, m

such that ω ¼ ωM;nj ¼ ωM;km, ωM;nm ≔ EðMÞ
n − EðMÞ

m . By
decomposing the various subspaces of H into the
fþ1;−1g⊗N subspaces of all the Rx we can ensure

orthonormality of all the overlapping AðMÞ
nj ðzÞ strictly local

dynamical symmetries. The maximal bound is therefore the
simple sum over the bounds of each subspace from Eq. (4).
We plot the OTOC spectral function bound for a many-
body observable Wx ¼ Vx ¼ szx;1s

z
x;2, for several separa-

tions y − x (Fig. 2) and for the minimal M that has finite
overlap with Wx, Vy. The larger the separation the
more frequencies come into the bound showing that it is
indeed a OTO crystal according to our definition. As
numerically observed in Ref. [43], despite localization,
the OTOC becomes finite for finite jx − yj. Note the
difference to MBL that does not have persistent OTOC
oscillations because of dephasing of l-bits [76]. To see how
fast the bound saturates in Fig. 2(b) we compare the
spectral OTOC bound coming from various M for
y − x ¼ 1. AsM is increased, the corresponding dynamical

symmetries AðMÞ
nm ðxÞ become less local and have lower

overlap with local operators.
More frequencies come into the dynamics, which

become exponentially more dense and incommensurate
(as seen in the inset of Fig. 2(b), as expected due to the
exponential growth of dimension of HðMÞ. This leads to

eigenstate dephasing [67], i.e., destructive interference,
indicating that only a few M are sufficient to saturate
the bound. This also explains the numerical observation of
Ref. [43] that the smallest subspaces contribute signifi-
cantly to the OTOC, in particular, in the long-time limit: the
bound presented here is by construction an infinite time
average. The model is even more stable than OTO crystals
generally because the only local perturbations that can

break AðMÞ
nm are those that break the local reflection

symmetry Rx. The OTO crystal is thus further protected
by this symmetry.
Conclusion.—We have shown that quantum many-body

systems can spontaneously reverse their own arrow of time,
as quantified by OTOC [1,2], without violating the laws of
thermodynamics. We call such systems OTO crystals—
their out-of-time-ordered correlations display both finite
frequency oscillations and nontrivial spatial dependence of
these frequencies. OTO crystals are stable to both local
unitary and dissipative perturbations. OTO crystals cannot
be formed by noninteracting models or with one single
effective degree of freedom. Rather than having such trivial

(a)

(b)

FIG. 2. (a) The lower bound for the OTOC spectral function for

Wx=y ¼ szx=y;1s
z
x=y;2 for various separations y using AðMÞ

nj ðzÞ with
the smallest nontrivial M. (b) The same bound for y ¼ 1 and
various M. The inset confirms that the density of distinct
frequencies scales exponentially with M implying that larger
M become quickly irrelevant due to dephasing. Data for
Δx ¼ Δy ¼ 2, Δz ¼ Δ0

x ¼ 1, and Δ0
y ¼ Δ0

z ¼ 1=2.
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dynamics at constant entropy, they have oscillations
of many-body scrambling itself. We have rigorously
shown that the OTO crystal behavior is implied by the
existence of strictly local dynamical symmetries that were
used to bound the amplitude of the OTOC oscillations.
Furthermore, strictly local dynamical symmetries imply a
type of local Hilbert space fragmentation, that should be
contrasted with true fragmentation [39], which does not
seemingly guarantee persistent oscillations by itself.
However, whether such oscillations are possible without
strictly local dynamical symmetries remains an open
question in particular in light of the OTOC study in
Ref. [41]. Connecting true fragmentation with the existence
of conservation laws [77] could be used to study such a
question. A simple example of an OTO crystal, a spin-1=2
XYZ Creutz ladder, was given. It essentially partitions itself
into blocks of increasing size that partially constrains
quantum information flow causing it to move back and
forth, until dephasing is achieved for large enough blocks.
The results open many other interesting avenues for

further exploration. Importantly, can recent highly success-
ful hydrodynamic theories [78–80], account for OTO
crystals? The introduced notion of stability to local per-
turbations is reminiscent of topological quantum order [81],
but, it is now present even at finite temperatures and
frequencies. Can this similarity be exploited to have
dynamical topological quantum information processing
at finite temperatures in interacting systems? Likewise,
oscillating entanglement could have important implications
for quantum information processing and metrology [82].
Another general question is what do oscillations in the
OTOC imply for entanglement [83] and transport [49].
Finally, OTO crystals could be identified in other systems,
even though all the known nonstationary quantum many-
body systems (e.g., [11,35,45]) possess only one frequency
of oscillations and do not display nontrivial spatial depend-
ence in that frequency. Can OTO crystals be achieved
without constrained dynamics? In particular, it would be
interesting to explore gravitational waves in holographi-
cally dual models displaying such oscillations [84,85].
Connections to spontaneous dynamical phase transitions
[86] will be explored. Finally, a possibly experimental
implementation using a bosonic Creutz ladder with circuit
QED could simulate our spin-1=2 model in the hard-core
limit of the bosonic system [87]. Likewise, experimental
protocols for measuring OTOC exist, e.g., Refs. [1,88],
making our OTO crystal potentially experimentally
relevant.
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