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From the flashes of fireflies to Josephson junctions and power infrastructure, networks of coupled phase
oscillators provide a powerful framework to describe synchronization phenomena in many natural and
engineered systems. Most real-world networks are under the influence of noisy, random inputs, potentially
inhibiting synchronization. While noise is unavoidable, here we show that there exist optimal noise patterns
which minimize desynchronizing effects and even enhance order. Specifically, using analytical arguments
we show that in the case of a two-oscillator model, there exists a sharp transition from a regime where the
optimal synchrony-enhancing noise is perfectly anticorrelated, to one where the optimal noise is correlated.
More generally, we then use numerical optimization methods to demonstrate that there exist anticorrelated
noise patterns that optimally enhance synchronization in large complex oscillator networks. Our results
may have implications in networks such as power grids and neuronal networks, which are subject to
significant amounts of correlated input noise.
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The occurrence of noise is unavoidable in networks and
systems at all scales [1], from biological examples [2] such
as neurons in the auditory and visual pathways [3–5] and
neural information processing [6,7] to mechanical oscil-
lators [8] and fluctuating inputs affecting the stability of
power grids [9–11]. Synchronization of the underlying
network of nonlinear phase oscillators is a paradigm
employed to understand such physical and biological
networks [12,13]. Fluctuations are generally seen as unde-
sirable, and significant efforts have been made to under-
stand and prevent their detrimental effects on network
synchronization [14–19]. Optimization methods have been
successfully employed to improve synchrony with and
without noise, in particular by adjusting the weighted
network topology [17,20–28]. Similar techniques have
also been effective for other types of networks and
objectives such as efficient transport [29–35]. There has
been recent interest in the possibility that noise may be
leveraged to enhance synchronization [36–43]. Specifically,
it was found that the degree to which input noise is correlated
may have a significant influence on its ability to aid in or
prevent network synchrony [36].
Based on the widely used Kuramoto model [44,45], here

we study the optimal patterns of input noise correlations that
enhance synchronization in networks of oscillators. Using
analytic arguments we find that in the simple case of two
coupled oscillators in the phase-drift regime as studied in
Ref. [36], the optimal synchrony-enhancing noise under-
goes a transition from perfect anticorrelation to perfect
correlation as the total noise strength is increased. We then
numerically study generic complex networks near phase-
locked fixed points and show that the optimal pattern of
synchrony-enhancing noise retains essential characteristics

seen in the two-oscillator case. The optimal noise we
uncover is strongly linked to the network topology. In
complex networks, the optimal noise correlations show
characteristic clustering, separating the network into regions
that benefit from receiving uncorrelated inputs. We now
proceed to analytically study the tractable case of two
connected Kuramoto oscillators subject to generic noise.
The model consists of coupled phase oscillators with

different natural frequencies. In the limit of weak coupling,
the phases can be modeled using the Kuramoto-type
equations

dθ1
dt

¼ ω1 þ
K
2
sinðθ2 − θ1Þ þ η1

dθ2
dt

¼ ω2 þ
K
2
sinðθ1 − θ2Þ þ η2; ð1Þ

where θiðtÞ are the oscillator phases, ωi the natural
frequencies, K is the coupling constant, and ηi are
stochastic white noise terms satisfying hηii ¼ 0 and
hηiðtÞηjðt0Þi ¼ Cijδðt − t0Þ with the symmetric and positive
semidefinite covariance matrix Cij ¼ Cji. The model
described by Eq. (1) was recently shown to exhibit
counterintuitive enhanced synchronization under uncorre-
lated noise Cij ∼ δij as opposed to common noise Cij ¼ C
[36]. We now study this effect allowing for arbitrary
correlations between the noise terms. It is useful to change
variables to the mean angle μ ¼ ðθ1 þ θ2Þ=2 and angular
difference δ ¼ θ1 − θ2. The mean μ is irrelevant for
synchronization as quantified by the squared Kuramoto
order parameter R2 ¼ jPj e

iθj=Nj2 ¼ 1=2þ ð1=2Þ cos δ.
We focus on the equation for the phase difference,
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δ0ðτÞ ¼ 1 − κ sin δðτÞ þ ζ; ð2Þ

where the prime indicates a derivative with respect to
τ ¼ Δω t, the dimensionless parameter κ ¼ K=Δω, and the
dimensionless noise ζ ¼ ðη1 − η2Þ=Δω.
In the absence of noise, ζ ¼ 0, it is well known

that Eq. (2) exhibits a synchronization transition at
κ ¼ 1 [44,46]. To study nonvanishing noise, we calculate
hζi ¼ 0 and

hζðτÞζðτ0Þi ¼ 1

Δω
ðC11 − 2C12 þ C22Þδðτ − τ0Þ

¼ 2ς2δðτ − τ0Þ:

This suggests that ς2 ¼ ðC11 − 2C12 þ C22Þ=ð2ΔωÞ is
the relevant effective noise strength for synchronization.
This effective noise strength depends on the correlation
between the original noise inputs η1;2. Specifically, for
common noise, Cij ¼ σ2 implies ς2 ¼ 0: Common noise
does not affect synchronization at all. For uncorrelated
noise, Cii ¼ σ2 and C12 ¼ 0, which implies ς2 ¼ σ2=Δω.
A similar argument shows that the maximum effective
noise strength for synchronization is achieved for anti-
correlated inputs Cii ¼ σ2, C12 ¼ −σ2 with ς2 ¼ 2σ2=Δω.
But how does ς2 affect synchronization, and can we find

an optimal noise correlation? We numerically simulated
Eq. (2) and computed long-time averages of the order
parameter hR2i for several ς2. In the regime below the
transition, κ < 1, noise generally enhances synchroniza-
tion, while for κ > 1, noise generally decreases synchro-
nization [Fig. 1(a), Ref. [36] ]. At fixed κ, there exists an
optimal effective noise ς2� that maximizes synchronization
[Fig. 1(b)].
We can relate this to the original noise covariance

matrix as follows. Fixing the noise variances Cii ¼ σ2i ,
the covariance C12 ¼ σ1σ2ρ with the correlation

−1 ≤ ρ ≤ 1 can be used to tune the effective noise and
thus increase synchronization. While it appears straight-
forward to obtain the optimal ς2� and then to solve
ς2� ¼ ðσ21 − 2σ1σ2ρþ σ22Þ=ð2ΔωÞ for the correlation ρ,
the constraint −1 ≤ ρ ≤ 1 must be taken into account: it
is not always possible to adjust ρ and reach the optimal ς2�.
When this happens, the optimal correlation occurs at the
boundary of the allowed range, ρ� ¼ �1. Solving for ρ�,
the optimal correlation to enhance synchronization at fixed
σ1;2 is then

ρ� ¼
�
σ21 þ σ22
2σ1σ2

−
ς2�Δω
σ1σ2

�0
; ð3Þ

where the primed angle brackets indicate that the argument
is clipped to remain between −1 and 1 using
½x�0 ¼ min½maxðx;−1Þ; 1�. This clipping leads to a sharp
transition [Figs. 1(c) and 1(d)]. In the following, it is useful
to introduce the average σ ¼ ðσ1 þ σ2Þ=2. For small
σ=

ffiffiffiffiffiffiffi
Δω

p
, anticorrelated noise optimally enhances synchro-

nization [Fig. 1(c)]. Solving Eq. (3) for ρ� ¼ −1, we find
the critical noise strength σa below which anticorrelated
noise is optimal, σa ¼ ς�

ffiffiffiffiffiffiffiffiffiffiffiffi
Δω=2

p
. Similarly, solving

Eq. (3) for ρ� ¼ þ1, we find the critical noise strength
σc above which common noise is optimal, σc ¼ σa=α,
where α ¼ jσ1 − σ2j=ðσ1 þ σ2Þ. In the regime where
−1 < ρ� < 1, the global optimum can be reached, and
hR2i� is constant. Otherwise, the optimal order parameter
occurs at the boundary of the allowed range of ρ and is less
than the global maximum. In this case, ρ� ¼ �1 [Fig. 1(c)].
While ς2� and thus ρ� can be obtained numerically, it is

possible to gain insight from an analytic approximation.
Equation (2) is equivalent to the Fokker-Planck equation

FIG. 1. Noise-enhanced synchronization in the two-oscillator model and optimal covariance transition. (a) Numerically obtained hR2i
from integrating Eq. (2) until τ ¼ 400 000 from random initial conditions as a function of κ ¼ K=Δω for several ς. (b) Numerically
obtained hR2i from integrating Eq. (2) until τ ¼ 20 000 from random initial conditions (circles) and analytic approximation (see the
Supplemental Material [47], Sec. I for the explicit formula) as a function of ς for κ ¼ 0.9. (c) Numerically approximated optimal
covariance ρ�. To simplify comparing between different combinations of σ1;2, we introduced the average σ ¼ ðσ1 þ σ2Þ=2 and the
relative difference α ¼ jσ1 − σ2j=ðσ1 þ σ2Þ. Optimal correlations were obtained at κ ¼ 0.1. The transitions occur at σa=

ffiffiffiffiffiffiffi
Δω

p
≈ 1=

ffiffiffi
2

p

and σc=
ffiffiffiffiffiffiffi
Δω

p
≈ 1=ðα ffiffiffi

2
p Þ. (d) Approximate optimal order parameter hR2i� for the optimal covariances shown in panel (c) at κ ¼ 0.1.
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∂pðδ; tÞ
∂t ¼ −

∂
∂δ ½ð1 − κ sin δÞpðδ; tÞ� þ ς2

∂2pðδ; tÞ
∂δ2 ð4Þ

for the probability density pðδþ 2π; tÞ ¼ pðδ; tÞ. From a
Fourier series approximation to the solution of Eq. (4), we
obtain an explicit expression for hR2iðς; κÞ in the regime of
small κ [47]. The optimal effective noise is then
ς2� ¼ 1 − ð23=100Þκ2 þOðκ4Þ, and the corresponding maxi-
mal order parameter is hR2i� ¼ 1=2þ ðκ=8Þ þOðκ3Þ. Even
for larger κ ≲ 1, there is good agreement with
full numerical solutions of the Fokker-Planck equation
[Fig. 1(b), Supplemental Material [47], Sec. I]. The situation
is different in the regime κ > 1 where phase-locked fixed
points exist. Here, common noise is always optimal, and the
noise-free order parameter R2

0 can not be exceeded
(Supplemental Material [47], Sec. II).
In many real-world cases such as power grids, the

network operates near a phase-locked fixed point instead
of in the incoherent regime. Therefore, we now focus on
general networks near a fixed point and show that, unlike in
the two-oscillator case, there exist optimal correlation
patterns beyond common noise that enhance synchroniza-
tion. While we note that other order parameters can also be
relevant [53], here we consider the Kuramoto order
parameter. The equations of motion for N coupled oscil-
lators are

dθi
dt

¼ ωi þ
XN
j¼1

Kij sinðθj − θiÞ þ ηi; ð5Þ

where again the stochastic forcing is given by
correlated white noise, hηiðtÞηjðt0Þi ¼ Cijδðt − t0Þ and
hηii ¼ 0. The matrix Kij ¼ Kji encodes the weighted net-
work topology. Equation (5) as well as the order parameter
allow one to shift the phases as θi → θi − μ, where μ is the
mean phase. In the following, we adopt these “centered
dynamics,” where the mean natural frequency, the mean
noise, and the mean covariance with any oscillator vanish,P

i ωi ¼
P

j ηj ¼
P

j Cij ¼ 0 (Supplemental Material
[47], Sec. III). Note that noise that is uncorrelated in the
original frame (Cij ∼ δij) appears uniformly correlated in
centered dynamics, Cij ∼ δij þ ðδij − 1Þ=ðN − 1Þ.
Assuming that weak noise drives the centered Eq. (5) near
a fixed point 0 ¼ ωi þ

P
N
j¼1Kij sinðθ̄j − θ̄iÞ, we expand

θi ¼ θ̄i þ εi to obtain the linearized dynamics of the
perturbations εi,

dεi
dt

¼
XN
j¼1

Kij cosðθ̄j − θ̄iÞðεj − εiÞ þ ηi: ð6Þ

In the following, we are interested in long-time averages
such that any initial transients have decayed and the system
has settled into an equilibrium distribution. We expand the
order parameter averaged in this way,

hR2i ¼ R2
0 þ

1

2
hε⊤Hεi þOðε3Þ; ð7Þ

where R2
0 is the order parameter at the fixed point θ̄i, and the

angle brackets denote the long-time average. The linear term
hJεi ¼ Jhεi, where J is the Jacobian matrix, vanishes due to
hεi ¼ 0. The Hessian matrix Hij ¼ ð2=N2Þ½cosðθ̄i − θ̄jÞ−
δij

P
k cosðθ̄i − θ̄kÞ� encodes the synchronization state of the

fixed point and is negative semidefinite close to the synchro-
nous state θ̄i ≈ 0 (Supplemental Material [47], Sec. VI), but
can be positive semidefinite or even indefinite, for instance

FIG. 2. Optimal noise patterns in periodic oscillator chains near
fixed points. (a) Time-averaged order parameter hR2iðtÞ ¼
ð1=tÞ R t

0 R
2ðt0Þdt0 in a periodic chain of N ¼ 54 oscillators for

optimal and uncorrelated noise. Dashed lines correspond to
model predictions from Eq. (7). The noise variance σ ¼ 0.5.
(b) Numerically obtained long-time order parameters hR2i in an
N ¼ 20 periodic chain of oscillators with optimal and uncorre-
lated noise. Dashed lines correspond to model predictions; order
parameters were obtained at t ¼ 15 000. (c) Optimal covariance
matrix for even periodic chain of N ¼ 34. (d) Optimal
covariance matrix for odd periodic chain of N ¼ 35. (e) Optimal
covariances C1;i with respect to the first oscillator in the even
chain. (f) Frustrated optimal covariance pattern C18;i with respect
to the center oscillator in the odd chain. Natural frequencies
in all panels were drawn from the normal distribution
N ð0; 1=N2Þ, and K ¼ 2.
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close to “twisted states” (Ref. [48] andSupplementalMaterial
[47], Sec. VI). Thus, we expect that noise will generically
reduce synchrony. However, it is still possible to find noise
inputs that minimize these effects, and transitions can occur.
Equation (7) suggests that such optimal synchronization is
achieved by maximizing the second-order term hε⊤Hεi ¼
trðHEÞ. Here, trð·Þ is thematrix trace, andE ¼ hεε⊤i satisfies
the continuous Lyapunov equation LEþ EL ¼ −C
for the weighted Laplacian matrix Lij ¼ Kij cosðθ̄j − θ̄iÞ−
δij

P
n Kin cosðθ̄n − θ̄iÞ. This can be seen by formally

solving Eq. (6) in the Langevin formalism and performing
the noise average (Supplemental Material [47], Sec. V). The
Lyapunov equation frequently occurs in stability and control
theory [49]. Our goal of finding the optimal noise covariances
C can be formulated as the constrained optimization problem

max
C;E

tr ðHEÞ
such that LEþ EL ¼ −C

C ≽ 0: ð8Þ

A valid covariance matrix must be positive semidefinite,
C≽ 0. This constraint turns the problem into a semidefinite
program [54]. As it stands, the optimization problem is
unbounded, such that we must augment it by an additional
constraint to set the noise scale. For simplicity, we fix uniform
variances,Cii ¼ 1. Because the Lyapunov equation in Eq. (8)
is linear, any uniform Cii can be obtained by rescaling the
optimal solution. Because of the centered frame constraintP

j Cij ¼ 0 we expect anticorrelations to be relevant in
complex networks again.
To uncover the relationship between network topology

and optimal noise, we numerically analyze networks of
increasing complexity. For simplicity, we take the coupling
constants to be uniform, Kij ≡ K=d, where d is the net-
work’s average degree. We draw the natural frequencies
from a Gaussian distribution ωi ∼N ð0; 1=N2Þ, where N is
the number of nodes. The mean of the natural frequencies for
each network is set to exactly zero. Fixed points and

solutions to the semidefinite program in Eq. (8) are obtained
numerically (Supplemental Material [47], Sec. IV).
As the simplest extension of our two-oscillator model we

first consider periodic chains of N oscillators. We note that
the optimal noise pattern obtained from solving Eq. (8) is
highly effective in improving synchronization as compared
with uncorrelated noise [Fig. 2(a)], even far into the
nonlinear regime [Fig. 2(b)]. Interestingly, the optimal
noise is such that neighboring pairs in chains with an even
number of oscillators receive anticorrelated inputs [Figs. 2(c)
and 2(e)]. However, it is not always possible for all pairs of
neighbors in a network to receive perfectly anticorrelated
inputs, leading to frustrated patterns of optimal noise.
Indeed, for an odd number of oscillators in the chain, the
magnitude of the optimal noise correlation jCijj decays away
from any particular oscillator i. The chain topology prevents
any two neighboring oscillators from receiving perfectly
anticorrelated noise [Figs. 2(d) and 2(f)]. This effect is also
seen in periodic grids (Supplemental Material [47],
Sec. VIII). It is interesting to note that the optimal noise
itself may exhibit a transition from local to global organi-
zation near the synchronization transition of the underlying
network, depending on the specific set of natural frequencies
ωi [Fig. 3]. The transition is accompanied by a significant
increase of the order parameter [Fig. 3(a)] that even persists
into the phase-drift regime for a large region of couplings K
(Supplemental Material [47], Sec. IX).
We finally consider complex network topologies derived

from power grids [55]. Here, the optimal noise patterns
show clustering, where groups of oscillators are approx-
imately anticorrelated among themselves. Correlations
between the clusters are approximately zero (Fig. 4),
potentially promoting cluster synchronization [56]. One
particular type of cluster in these networks consists of one
single “dangling” node together with its neighbor. Such
nodes have been identified as vulnerable to perturbations
before [57,58]. Real power grid dynamics can be modeled
using a second-order model [9] which is also amenable to
our method and shows a dependence of the optimal

FIG. 3. Optimal noise covariance matrix near the synchronization near the synchronization transition in a N ¼ 12 ring of oscillators.
(a) Optimal noise significantly enhances the approximate order parameter hR2i ¼ R2

0 þ ð1=2Þσ2 trðHEÞ close to the synchronization
transition. Shown are curves with σ ¼ 0.25 and σ ¼ 0 (no noise). (b)–(e) Optimal covariance matrices near the synchronization
transition. The locations corresponding to the matrices in panels (b)–(e) are marked (red circles) in panel (a). Close to the phase-drift
regime (small K), the optimal covariances are large-scale ordered and then transition to local order.
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covariances on the inertia in the network (Supplemental
Material [47], Sec. X).
We studied to what extent synchronization in complex

oscillator networks can be enhanced by correlated noise.
We showed that in the phase-drift regime of a two-oscillator
system, optimal noise correlations can significantly
improve synchronization. The optimal correlations exhibit
a transition between anticorrelated and correlated noise
depending on the overall noise strength. In complex net-
works, we found that the optimal input noise is generally
anticorrelated with diverse patterns where the strength of
correlations can be constant, decaying, or even be restricted
to clusters of oscillators.
Our results may have implications for real networks such

as power grids and neuronal networks. For instance, power
grid synchronization may be enhanced if new power plants
and lines are judiciously placed according to the principles
outlined above. Correlations of input noise can be esti-
mated [59], or predicted from the weather [60,61]. Our
work opens up new pathways to understanding and con-
trolling synchronization in complex systems.

S. M., T. S., and T. T. C. acknowledge support from the
Williams College Science Center.
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