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Custodial Chiral Symmetry in a Su-Schrieffer-Heeger Electrical Circuit with Memory
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Custodial symmetries are common in the standard model of particle physics. They arise when quantum
corrections to a parameter are proportional to the parameter itself. Here, we show that a custodial symmetry
of the chiral type is also present in a classical Su-Schrieffer-Heeger (SSH) electrical circuit with memory. In
the absence of memory, the SSH circuit supports a symmetry-protected topological edge state. Memory
induces nonlinearities that break chiral symmetry explicitly and spread the state across the circuit.
However, the resulting state is still protected against perturbations by the ensuing custodial chiral
symmetry. These predictions can be verified experimentally and demonstrate the interplay between

symmetry and memory.
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A symmetry is said to be custodial if, despite being
explicitly broken, it still protects physical quantities (e.g.,
the mass of particles) from large quantum corrections [1,2].
Symmetries of this type appear in the standard model of
particle physics. They arise when quantum corrections to a
parameter, as introduced by some symmetry-breaking term
in the Lagrangian (e.g., a mass term), are proportional to the
parameter itself.

For instance, a custodial SU(2),, symmetry protects the
mass relation between the electroweak W and Z gauge
bosons from large quantum corrections; or a custodial
chiral symmetry protects fermion masses from large radi-
ative corrections.

However, symmetry (like topology) is a concept that
extends far beyond quantum systems. As such, it is natural
to ask whether custodial symmetries can emerge in
classical systems as well. In this Letter, we answer this
question in the affirmative. In particular, we use the 1D Su-
Schrieffer-Heeger (SSH) model with memory, as realized in
electrical circuits with resistive memories [3], as a proto-
typical example where this type of symmetry can be
detected experimentally. The SSH model is a paradigmatic
symmetry-protected topological insulator [4,5], namely, it
realizes a state of matter with a quantized topological
indicator, known as the winding number, associated with a
symmetry (chiral in the case of the SSH model) and a finite
gap (in the thermodynamic limit).

In fact, there have been studies of electric circuits that
simulate topological systems [6-19]. The simplest such
circuit can be realized with an alternating series of
capacitors, C; and C,, and inductors, L (Fig. 1). The ratio
C,/C, controls the existence of a symmetry-protected
topological midgap state at one edge of the circuit. This
state can be easily detected as a peak in the impedance as a
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function of frequency [Fig. 2(a)], and is localized at the
edge of the circuit, as a plot of the voltage drop at the nodes
easily shows [Fig. 2(b)]. This state is robust against local
perturbations that do not break the chiral symmetry. We
would then expect that if we introduced elements in the
circuit that explicitly break such a symmetry, the edge state
would disappear as the perturbation strength increases.
Here, we introduce such elements in the form of
experimentally realizable resistors with memory (memris-
tive elements) [3] in parallel with the capacitors] Fig. 1(b)].
(The case of memristive elements in series with the
capacitors is reported in the Supplemental Material [20].)
Such elements introduce non-Hermiticity and strong

-||_W =

1l
|

FIG. 1. Schematics of (a) standard and (b) memristive SSH
circuit. The numbers in (a) represent the node number. In
simulations, we used C; = 0.22 uF [blue (odd) capacitors], C, =
0.1 uF [red (even) capacitors], and L = 10 uH (all inductors).
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FIG. 2. Resistive or memristive SSH circuit simulations. (a) Impedance Z;, of the circuit in Fig. 1(b) for different values of the
resistance of standard resistors. (b) Maximum values of the node voltage at v = 89 kHz. (c) Color map representation of R = 103 Q
calculation in (b). (d) Impedance of the circuit in Fig. 1(b) for different values of the low memristance state R,. (¢) Maximum values of
the node voltage at v = 89 kHz. We used Ry (t = 0) = 10* Q, Ry = 107 Q, a = 10°(V -s)~!, and V, = 0.3 V. () Color map

representation of R,, = 10° Q calculation in (e).

nonlinearities, and break chiral symmetry explicitly. In fact,
they delocalize the midgap state along the whole circuit.
However, the resulting state is still robust against pertur-
bations. We will show that the reason for this robustness is
the reduction of the original chiral symmetry to a custodial
status when memristive elements are added.

SSH circuit—One way of emulating symmetry-pro-
tected topological systems via electric circuits [9] is based
on the relation I = GV for idealized linear and memoryless
elements. Here, I and V are the profiles of the current and
voltage along the circuit, and G is the conductance matrix.
By connecting alternating capacitors C; and C, in a circuit
like the one shown in Fig. 1(a), a classical analog of the 1D
SSH model [9] can be realized. The SSH circuit with
periodic boundary condition leads to the following con-
ductance matrix in the Bloch form:

G = iold, (K)o, + d,(k)o, + hyl,]. (1)

Here, d,(k) = —[C,+ C,cos(k)], d,(k)=—C,sin(k),
hy = [-(1/@*L) + C, + C5], and 1, is the 2 x 2 identity
matrix, and o, , . are the Pauli matrices. The momentum k
is within the first Brillouin zone. An inductor L connected
to the ground has been included in each cell. The
conductance matrix (1) thus plays the role of the

Hamiltonian. In the ideal situation, namely, in the absence
of memory, dissipation, and/or other chiral symmetry-
breaking elements, the eigenvalues of the conductance
matrix resemble the energy spectrum of the quantum
SSH model [9]. The two energy bands of the quantum
model become, in the electrical circuit analog, two continua
of the conductance as a function of the driving frequency .

As mentioned, the midgap state may emerge when the
lattice has open boundary condition (see Fig. 1). In this
case, a localized edge state emerges near the left edge if
C,/C, < 1, and can be detected experimentally by meas-
uring, e.g., the two-point impedance, Z,, = (V, — Vy)/I,
between the source s and ground O nodes of the circuit
when the total current / flows through it. The impedance
then exhibits a peak with continua on both sides [Fig 2(a)].
The localized state is associated with the winding number
obtained from the equivalent system with periodic boun-
dary condition via the bulk-boundary correspondence [4].
The band (or bulk) states, meanwhile, contribute to clusters
of small peaks on both sides and away from the localized-
state peak (see the Supplemental Material [20]). We will
focus on the in-gap localized state hereinafter.

To more clearly see the emergence of the localized edge
state, let us write explicitly the conductance matrix for the
SSH circuit shown in Fig. 1 with N unit cells, each
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containing two capacitors and one inductor. Since the
voltage in Fig. 1 is applied to node 1 while node O is
grounded, the conductance matrix starting from node 1 has
the form G = Aly —iwB, where A = iw[—(w?L)™! +
C, + C,] contributes to a uniform shift of the spectrum, and

0 C, 0 0
c, 0 C 0
B = 0o ¢ 0 C - | (2)

By defining C=-C,/C;, a voltage profile V. =
(Vi,Vy,..0)T =(1,0,C,0,C?,0,...)T is an eigenstate of
G at the resonant frequency @ = 1/+/L(C; + C,). Here
the superscript T denotes the transpose. When |C| < 1, we
then clearly see that the voltage profile shows an expo-
nential decay towards the boundary opposite to the voltage
source [21]. Therefore, V|, is a localized state at the left
edge of the circuit. This state can be seen in Fig 2(b) (see
also Fig. S6 in the Supplemental Material [20]) in the
configuration when the current is applied only to the first
node. In addition, the diagonal part of the above matrix is
uniform and can be separated out, indicating that the chiral
(sublattice) symmetry is respected. To see this, let us define
the following projection operators P; and P, into the odd
and even sites, respectively: P, = diag(1,0,1,0,...) and
P2 = dlag(O, 1,0, 1, ) Then, (Pl —Pz)B(Pl —Pz) =
—B and the matrix B respects chiral symmetry.

SSH model with memory.—We now show that this
picture of band topology or chiral symmetry changes
dramatically in the presence of strong nonlinear effects
in the form of, say, memristive elements in parallel with the
capacitors [(Fig. 1(b)]. To this end, let us employ a widely
used model of memristive elements that reproduces the
main features of experimentally realized devices [3,22]:

RM = Roff(1 - X) + Ronx7 (3)

& oV = V)V V) OV = V)V V) (4)
Here R, is the memory resistance, R,,, and R are its limits,
x €[0,1] is the internal state variable, V, is a positive
threshold voltage, 6(v) is the Heaviside step function, and
a is the switching rate. When combined in parallel with the
capacitor and driven by V = Ve, we have I = [ioC +
(1/Ry)]V for a capacitor-resistor pair. Therefore, we can
group the contributions from the resistors by defining C,, =
C, + (ioRy;,,)~! for n = 1, 2, where Ry, is the memory
resistance of the nth memristive elements. This implies that
I, = ioC,V,. Hence, one may replace C;, C, in Eq. (1)
by Cy. Cs.

Because of the memory effect from the memristive
elements, a full analysis of the system requires the
(numerical) integration over time. However, to extract
the main features observed in the simulations, we will
use an approximate Fourier analysis (justified in the
Supplemental Material [20]). By generalizing G to the
admittance matrix and assuming the form I = GV still
holds for a frequency component, the first thing we notice
is that the presence of the memristive elements leads to a
complex-valued admittance matrix because the modified
circuit dissipates energy. If we write again G = d,0,+
dyo, + hol,, we then see that the trajectory (d,,d,) now
becomes a path in a complex space due to the presence of the
memory elements, namely, in a four-dimensional (real)
space, not two-dimensional as before. While a loop in a
two-dimensional plane enclosing the origin cannot be
smoothly transformed into a loop that does not enclose
the origin, a loop in three or higher dimensions can smoothly
deform around the origin without obstruction.

Therefore, the winding number of the original (memo-
ryless) SSH model is no longer faithful in characterizing the
topology of the (non-Hermitian) memcircuit. Moreover,
nonlinear effects come from the dependence of the memory
resistance Ry, on the voltage [Eq. (3)]. While it is possible
to characterize the topology of some non-Hermitian sys-
tems by using a biorthogonal basis [23,24], the presence of
nonlinear effects in the memory circuit invalidates the
construction of a basis for linear superposition [25].
Therefore, the SSH circuit with memory elements defies
the construction of conventional topological quantities.

On the other hand, localized edge states in tight-binding
models, known as Shockley-Tamm states [29,30], may still
arise due to symmetry and are not necessarily associated with
the band topology. For a 1D Ilattice with nearest-neighbor
interactions and alternating site strengths, the system has a
chiral (or sublattice) symmetry. As explained previously, the
symmetry can be observed by either constructing the
projectors P4, Py in real space or checking if the Bloch
Hamiltonian anticommutes with an operator. For the SSH
circuit with periodic boundary condition, ¢, anticommutes
with the diagonal part of the conduction matrix. Therefore,
the chiral symmetry leads to pairs of the eigenstates. For the
system shown in Fig. 1, a localized state may emerge with its
energy pinned inside the band gap in order to be consistent
with the chiral symmetry. If we had regular resistors
(Ry = R = constant) in parallel with the capacitors, we
would introduce dissipation, rendering the system non-
Hermitian, invalidating the winding number. However, the
SSH circuit with regular resistors remains linear, and chiral
symmetry still holds after the uniform diagonal part is
factored out. Therefore, the edge state is still protected by
the chiral symmetry [31], and the impedance shows a
broadened peak until the parallel resistance R is small
enough that the current will bypass the capacitors altogether
[see Fig. 2(a), where the peak decreases dramatically when
we reduce R from 10* to 100 Q].
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Custodial chiral symmetry.—If we now introduce
memory into the resistors in parallel with the capacitors
[Fig. 1(b)] two additional effects emerge. The nolinearity
introduced by these elements breaks chiral symmetry
explicitly: o,Bo, # —B, where B is the admittance matrix
after the uniform diagonal part is removed. The SSH edge
state is then no longer an eignestate of the conduction
matrix. Nonetheless, we find the original SSH edge state is
still present [as seen in the impedance curve of Fig. 2(c)]
but spreads across the circuit [Fig. 2(d)]. However, this
effect emerges from the diagonal component of the
admittance matrix. To see this, let us add alternating
memristive elements Ry, and Ry, to the circuit [32].
As discussed before, this leads to the effective capacitors
with C;(x;) = Ci(x;) + [iwRy ;(x;)]™", with i = 1, 2. Here
x; labels the node location of the element with voltage
V(x;) as shown in Fig. 2(d).

To the lowest order in R, ;, we may use V. as the input
voltage to get the profile of Ry ;(x;). The inhomogeneous

Ry ,(x;) then leads to G = A(x;)1y + B. Here A(x;) =
io[—(0?L(x;)™" + Cp(x;_1) + Cg(xj41)], where C; and
C are the capacitor to the left and to the right of the node,
and

0 Cy(xy) 0 0
. Cz<x1) o é1(953) 0
B= 0 61 (x2) (45} Cz(x4) S ®)

Here, a; = A(x;,;) — A(x;). The eigenstate of the admit-
tance matrix is now

Viais = (1,0, —€2(x1)
C(x3)

o Ca(xy) ’
2 () Cary) ) (©)

spreading over the whole circuit, consistent with the results of
Fig. 2(d). By comparing the matrix B above with the matrix
B of Eq. (2), we see that the nonlinear terms violate the
uniform diagonal of the linear case, thus breaking chiral
Ssymimetry.

However, note that the chiral-symmetry breaking term is
diagonal and depends on 1/R;,. In fact, we can define its
strength by taking the diagonals of the matrix Eq. (5):
A = diag(0,a;, @, ...). Using the projection operators,
P, and P,, we have previously defined, we have
(P — P,)A(P, — P,) = A, so the admittance in the pres-
ence of memory elements does not respect the full chiral
symmetry, but its violation is suppressed by increasing the
magnitude of the memristances Rj,.

In field-theory language we would say that the symmetry
is broken by a “mass term” and its strength is proportional to
the mass itself. This is precisely the definition of custodial
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FIG. 3. Memristive SSH circuit simulations with a capacitance
distribution of 15% and 30%. (a) Impedance as a function of
frequency found averaging 100 random realizations of the circuit.
(b) and (c) The voltage distributions for two selected frequencies.
The parameters of memristive elements are the same as in Fig. 2:
Ry, = 10? and Ry, (t = 0) = 10* Q.

symmetry [1]. We thus expect that the delocalized state (6) is
still protected against perturbations and located in the midgap
of the continua. This is shown explicitly in Fig. 3, where we
randomly perturb the values of the capacitors. Even up to
perturbations of 30%, the delocalized state associated with
the custodial symmetry is still clearly visible via the peak in
the impedance. (See the Supplemental Material [20] for
details.)

Conclusions.—In conclusion, we have shown that the
concept of custodial symmetry holds also in the classical
case. In particular, we have used a 1D electrical circuit with
memristive elements to emulate the SSH model with
memory effects. We have shown both analytically and
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numerically that memory induces nonlinearities that break
chiral symmetry explicitly and spreads the in-gap state
across the circuit. Nevertheless, the resulting state is still
protected against perturbations due to the promotion of the
original chiral symmetry to a custodial status. Our pre-
dictions, which can be verified experimentally with realistic
circuit elements, open up yet another venue to explore some
symmetry and topological concepts, which are typically
found in quantum systems, in classical settings.
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