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Domain wall dynamics in ferromagnets is complicated by internal degrees of freedom of the domain
walls. We develop a model of domain walls in disordered thin films with perpendicular magnetic
anisotropy capturing such features, and use it to study the depinning transition. For weak disorder,
excitations of the internal magnetization are rare, and the depinning transition takes on exponent values of
the quenched Edwards-Wilkinson equation. Stronger disorder results in disorder-dependent exponents
concurrently with nucleation of an increasing density of Bloch lines within the domain wall.
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Domain walls (DWs) driven by applied magnetic fields
in disordered ferromagnets constitute a paradigmatic sys-
tem exhibiting a depinning transition between pinned and
moving phases at vanishing temperatures T [1–4] as well as
slow thermally activated creep motion for finite T [5].
Related phenomena include the Barkhausen effect [6–8],
where scale-free jumps of DWs driven by a slowly
changing external field are measurable as magnetic “crack-
ling noise” [9]. Thus, DWs are often considered to belong
to a broader class of driven systems displaying similar
phenomena, including also, e.g., cracks [10], contact lines
[11], and grain boundaries [12].
A key class of models of such systems are driven elastic

interfaces in random media [13] where one typically
assumes purely dissipative dynamics at T small enough
that creep can be ignored [1]. Examples include simple
models such as the quenched Edwards-Wilkinson (qEW)
equation [14,15]. However, a crucial feature of magnetic
DWs is that there are often significant nondissipative
effects related to the magnetization direction inside the
DW. This is most dramatically illustrated by the Walker
breakdown in 1D nanowires, where the internal magneti-
zation begins to precess at a specific driving field magni-
tude, leading to a sharp drop in the DW propagation
velocity [16]. The depinning dynamics of point-like
DWs with an internal degree of freedom in 1D systems
can be dramatically changed by the Walker breakdown
effect, leading to a series of transitions between a pinned
and depinned DW as the driving field increases [17].
For line-like DWs in 2D thin films with perpendicular

magnetic anisotropy (PMA), instead of the internal in-plane
magnetization rotating uniformly together, it can vary along
the DW, resulting in formation of 1D domain wall-like
structures known as Bloch lines (BLs) inside the DW
[18–20]. The motion of BLs, separating regions of different
chiralities of the Bloch DW, mediates large-scale preces-
sion of the DW magnetization in an analogous manner
to dislocation motion mediating plastic flow in crystals.

Such effects were recently studied by full micromagnetic
simulations of Barkhausen noise [21]. However, micro-
magnetic simulations describing the magnetization dynam-
ics everywhere in the system are limited to small system
sizes, resulting in significant finite size effects.
In this Letter, we study the depinning dynamics of thin

film DWs in large systems (up to 2 orders of magnitude
larger than in recent micromagnetic simulations [21]) by
developing a reduced model able to describe BL dynamics
inside the DW while including only the degrees of freedom
of the line-like DW itself. Strikingly, and contrary to
what one observes in simple elastic line models of DWs
neglecting the internal degrees of freedom, we find that
the depinning exponents evolve with the disorder strength.
We interpret this variation as a slow crossover from the
universality class of the qEWequation—describing DWs in
weakly disordered films with a low BL density—to another
class in the limit of strong disorder. We argue that this
crossover originates from the spatially heterogeneous
dynamic arrangement of BLs affecting locally the DW
mobility in the strong disorder regime. Our results thus
reveal a previously unknown paradigm of disorder-depen-
dent criticality at the depinning transition of DWs with
internal degrees of freedom.
We formulate a model of DWs in PMA films by viewing

the Landau-Lifshitz-Gilbert (LLG) equation in terms of
the polar angles θ and ϕ of the magnetization vector
m ¼ cos θez þ sin θðcosϕex þ sinϕeyÞ as a dissipative

Euler-Lagrange equation, i.e., ð∂=∂tÞðδL=δ_θÞ−ðδL=δθÞþ
ðδF=δ_θÞ¼0 and ð∂=∂tÞðδL=δ _ϕÞ−ðδL=δϕÞþðδF=δ _ϕÞ¼0.
Here the Lagrangian L½θ;ϕ� ¼ T½θ;ϕ� − E½θ;ϕ� comprises
of a “kinetic” part T½θ;ϕ� ¼ ðMs=γÞ

R
ϕ_θ sin θdx, where

Ms is the saturation magnetization and γ the gyromagnetic
ratio, and the energy functional E½θ;ϕ�¼R ½Aexð∇θ2þ
∇ϕ2 sin2θÞ−Kucos2θ−BaMs cosθ�dxþEd½θ;ϕ�, using a
local approximation for the demagnetization energy Ed ¼
− 1

2
μ0M2

s

R ½Nnðm · nÞ2 þm2
z �dx, where n is the unit
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vector perpendicular to the DW, and Nn is given to lowest
order in the film thickness Δ as ðΔ=πDÞ ln 2 [22]. The
dissipation functional is given by F½θ;ϕ�¼ðαMs=2γÞ

R ð_θ2þ
_ϕ2sin2θÞdx, where α is the Gilbert damping constant.
We derive a local description by changing variables to
coordinates co-moving with the DW, given by x ¼
rðs; tÞ þ ρnðs; tÞ, where rðsÞ is a parametrized curve
describing the DW, nðsÞ ¼ l−1ez × u is the normal vector
to the wall, u ¼ ð∂r=∂sÞ is the tangent, l ¼ juj is the
length of the tangent, and ρ denotes the projected signed
distance from x to rðsÞ. Integrating over the normal
coordinate ρ and truncating to second order in the physical
quantities, we find L and F for the quantities r, ϕ, and D
from which we can derive dynamical equations. We then
choose the specific parametrization of a graph rðx; tÞ ¼
xex þ hðx; tÞey and assume that the slope ð∂h=∂xÞ is
small. Approximating the DW width as the constant

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Aex=ðKu − 1

2
μ0M2

sÞ�
q

, we find

_ϕþ α
_h
D

¼ 2
γAex

MsD
h00 − γBa; ð1Þ

α _ϕ −
_h
D

¼ 2
γAex

Ms
ϕ00 −

γNn

2
μ0Ms sin½2ðϕ − χÞ�; ð2Þ

where primes denote differentiation with respect to x,
and χ ¼ atanh0 is the angle of the DW with respect to a
flat, horizontal configuration. Notice that without internal
degrees of freedom (i.e., for _ϕ ¼ 0 and ϕ ¼ χ), Eq. (1)
reduces to the qEW equation, while neglecting the spatial
derivatives results in the “1D model” of DW dynamics for a
constant D [23]. The applied field Ba includes quenched
disorder modeled as a random out-of-plane magnetic field
BaðrÞ ¼ Bext þ ηðrÞ, where the disorder is drawn from a
normal distribution with mean 0 and standard deviation σ.
This corresponds to random field disorder; random bond
disorder is expected to result in the same critical behavior
[24]. We ensure a spatial correlation length ξ such that
hηðrÞηðr0Þi ¼ σ2 exp½−ðjr − r0j2=ξ2Þ� by multiplying an
uncorrelated array of random numbers in k space with
∝ expð−k2ξ2=8Þ, and Fourier-transforming back to real
space. Linear interpolation is employed in the h direction to
compute the value of η at a given point hðxÞ.
For solving these equations numerically, we form the

complex quantity z ¼ h − iϕ. Measuring length in units of
D, time in units of ð1=γμ0MsÞ and magnetic field in units
of μ0Ms, Eqs. (1) and (2) are equivalent to ðαþ iÞ_z ¼
K̃z00 − Ba þ iðNn=2Þ sin½2ðϕ − χÞ�, where K̃ ¼ ½ð2Ku −
μ0M2

sÞ=ðμ0M2
sÞ�. We employ periodic boundary conditions

(PBCs) along x and solve this equation on a GPU by
treating the linear part implicitly and the nonlinear part
explicitly: Replacing the derivatives with first-order finite
differences, we obtain the semi-implicit numerical equation

Tijzjðtþ ΔtÞ ¼ NðtÞ, where NðtÞ contains the nonlinear
terms, and the matrix Tij is tridiagonal except at the
boundaries, where the PBCs give off-diagonal contribu-
tions, which can be perturbed away by using the Sherman-
Morrison formula [25]. This reduces the implicit problem
to a tridiagonal linear system, which can be solved
using the cusparseZgtsv2_nopivot function from
CuSparse [26].
We choose parameters corresponding to a 0.5 nm thick

Co film within a Pt=Co=Pt multilayer [5], i.e., Ku¼
8.4×105J=m3, Aex¼1.4×10−11Jm−11, Ms¼9.1×105A=m,
and α ¼ 0.27. We set ξ ¼ 20 nm ≈ 3D, discretize the DW
using a resolution of 6 nm ≈D along x, and consider
system sizes from L ≈ 16 up to L ≈ 262 μm.
We start by considering the disorder-dependent steady-

state DW velocity VðBext; σÞ. For each σ, an initially flat
and uniform (constant ϕ along the DW) DW is first let to
relax at Bext ¼ 0 until a static configuration is reached. Bext
is then increased in steps of 0.1 mT, evolving for 9.9 μs at
each Bext value. The steady-state VðBextÞ shown in Fig. 1(a)
for different σ is the time average over the second half
of the simulation time. For σ ¼ 0, VðBextÞ exhibits a linear
increase with Bext up to a Walker field BW ≈ 2.7 mT
(in excellent agreement with both the prediction BW ¼
ðα=2Þμ0MsNn ≈ 2.6 mT using Nn ¼ ðΔ=πDÞ ln 2 [22],
and micromagnetic simulations [21]), at which point V
abruptly drops due to the onset of precession of ϕ. We note
that due to weak numerical noise in our implementation,
some BLs are present even for σ ¼ 0, and hence the σ ¼ 0
curve shown in Fig. 1(a) should be interpreted as an
“infinitesimal disorder” case.
A finite σ results in a nonzero disorder-dependent depin-

ning field Bc where a depinning phase transition takes place.
Above this transition, the velocity curve takes on character-
istics of both effects similar to Walker breakdown due to BL
nucleation, and a sharp increase of V as Bext is increased
above Bc. At very small σ, BLs are nucleated in large
numbers only when Bext approaches BW , giving rise to a
rounded peak in VðBextÞ. As σ increases, BLs are nucleated
more readily at Bext values closer to Bc [insets of Fig. 1(a)
show example DW configurations for two values of σ], and
BLs are increasingly present also in the initial relaxed state.
This causes VðBextÞ to increase monotonically with Bext,
even when Bc is below the zero-σ Walker field. For VðBextÞ
in the high-field precessional regime (Bext ≫ BW), see
Supplemental Material [27]. Figure 1(b) shows a space-time
plot of ϕ during the dynamics for Bext ¼ Bc ≈ 2.22 mT at
σ ¼ 7 mT. Notice how the BLs (visible as transitions
between ϕ ¼ 0 and ϕ ¼ π along x) nucleate from the
initially uniform DW, and subsequently form a dynamic,
spatially heterogeneous pattern involving nucleation, propa-
gation and annihilation of BLs, with the BL density ρBL
increasing with t.
Close to Bc, the system takes on scale-free statistics with

large fluctuations, strong finite-size effects, and diverging
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correlation times. We therefore perform a more careful
study in that regime, by averaging over several realiza-
tions of the random disorder from a uniform initial
condition, using long running times, and varying L
from 16–262 μm. Figure 2 shows the steady-state veloc-
ity V close to Bc averaged over 6–50 realizations
(with more averaging closer to Bc), using 5 different
choices of σ which lead to values of Bc ranging from
well below to well above BW . In general, one expects
VðBextÞ ∝ ðBext − BcÞθ; for the qEW equation, θ ¼
θqEW ≈ 0.25 [29,30]. Fitting a function of this form (lines
in Fig. 2), we can determine Bc and θ. Strikingly, as
shown in the inset of Fig. 2(b), θ depends on σ: For small
but finite σ, θ approaches the qEW value of 0.25, while in
the limit of large σ it tends to a value close to 1. We note
that recent simulations for a specific disorder strength
based on the LLG equation of a Heisenberg-like model
found θ > θqEW [31].

ρBL is found to increase with σ. Figure 3 shows that for
the smallest σ (σ ¼ 3 mT) considered, the steady-state ρBL
is close to zero around Bext ¼ Bc, but increases signifi-
cantly (and exhibits a maximum at or close to Bext ¼ Bc)
with increasing σ. For large σ, BLs tend to form hetero-
geneous arrangements along the DW, with regions of high
ρBL separated by DW segments essentially free of BLs
(see insets of Fig. 1, and the Supplemental Material,
movie [27]). Concurrently, the squared interface width
w2 ¼ hðh − hhiÞ2i (averaged over the same number of
realizations as for V) also displays a maximum close
to Bc, with the peak value exhibiting a decrease with
increasing σ (Fig. 3).
Next, we consider the approach to critical pinning by

looking at the ensemble-averaged time-dependent velocity
VðtÞ, starting from a uniform state at Bext ¼ Bc, as obtained
above from the fits to the steady-state velocities. We expect
VðtÞ to follow VðtÞ ∝ t−δ, with δqEW ¼ 0.129 for the qEW
equation [29,30]. Figure 4(a) shows the VðtÞ’s for the five
different σ’s considered (symbols represent logarithmically
binned data, plotted on top of the raw averaged velocity
signals shown with lines). At the small σ ¼ 3 mT, we see
an early power law strongly resembling the qEW behavior,
but at late times VðtÞ begins a transition to a steeper decay.
As σ is increased, this transition becomes more dramatic
and happens at earlier times, until we see a long-t strong-
disorder “saturated” value δ ¼ δsat close to 0.9 at the
highest σ. This is associated with ρBL increasing both with
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FIG. 2. (a) Average steady-state DW velocity VðBextÞ close to
Bc for L ≈ 262 μm, for 5 values of σ (legend). Lines indicate fits
of V ¼ CðBext − BcÞθ. (b) Same data shown on a log-log
scale as a function of ðBext − BcÞ=Bc. Inset: The effective
σ-dependent θ from the fits, with the dashed horizontal line
corresponding to θqEW ¼ 0.25.
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FIG. 1. (a) Steady-state DW velocity VðBextÞ for different
values of σ at L ≈ 65.5 μm. Insets: Snapshots of parts of the
DWat Bext ¼ Bc for σ ¼ 4 (left) and σ ¼ 7 mT (right), with color
indicating the local ϕ-value [color bar in (b)]. (b) Space-time map
of ϕ at Bext ¼ Bc ≈ 2.22 and σ ¼ 7 mT.
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t and σ (see Figs. 1 and 3). We note that this results in a
t- and σ-dependent DW mobility via V=Bext¼D=½αþðπ2=
2αÞDBLρBL�, where DBL is the BL width [32].
A possible interpretation is a disorder-dependent cross-

over timescale tcðσÞ between two different power law
regimes. To test this, we rescale the time axis by στ and
the velocity by σν. Figure 4(b) shows the logarithmically
binned data, rescaled with τ ¼ 6 and ν ¼ 1.5, resulting in a
good data collapse of the central parts of the velocity
signals (large symbols). We then fit the resulting master
curve with the crossover scaling form [8]

Vðt; Bext ¼ BcÞ ¼ Ct−δqEW
�
1þ

�
t
tc

�
kðδsat−δqEWÞ�−1=k

; ð3Þ

shown as a solid black line in Fig. 4(b); the asymptotic
power laws Vðt ≪ tcÞ ∝ t−δqEW and Vðt ≫ tcÞ ∝ t−δsat are
indicated as dashed lines. k controls the sharpness of
the crossover; our fit gives k ≈ 0.48, consistent with the
relatively slow crossover.
Having determined the σ-dependent θ and δ, we finally

study the roughness of the DWat Bext ¼ Bc. w is expected to
follow the scalings w ∝ tβ for t ≪ t� and w ∝ Lζ for t ≫ t�,
where t� ∝ Lz with z ¼ ζ=β [33], with ζ and z the roughness
and dynamic exponents, respectively. Figure 5(a) shows the
data collapse according to each of these scalings for the 5
values of σ (saturated w2 shown in the inset), allowing us to
obtain estimates of σ-dependent β and ζ [inset of Fig. 5(b)].
In the limit of small but finite σ, the exponents tend towards
the qEW values. To estimate the asymptotic β exponent in
the limit of large σ, we first collapse the 5 disorder-specific
data collapses in Fig. 5(a) by rescaling the data with powers
of σ, resulting in a good data collapse for the middle parts of
the data [large symbols in Fig. 5(b)]. Fitting the master curve
with a crossover scaling form similar to Eq. (3) reveals a
slow crossover (k ≈ 0.2) from βqEW ≈ 0.87 [30] for early
times or weak disorder to an asymptotic long time or strong
disorder exponent βsat ≈ 0.32. Concurrently, we find an
effective ζ decreasing from ζqEW ≈ 1.25 as σ is increased
[inset of Fig. 5(b)].
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To conclude, our results reveal the unusual disorder-
dependent nature of criticality at the depinning transition
of thin film DWs. These features are related to localized
reduction of DW mobility for strong disorder due to
proliferation of BLs within moving parts of the DW,
damping the roughness growth. This indicates that simple
elastic line models are unable to properly describe depinning
dynamics of DWs. Experimental studies verifying these
results are needed, and are likely to be challenging due to the
need to reach very low temperatures [34,35] (to minimize
thermal rounding [2]), and to control the disorder. It would
be interesting to extend our study to 3D systems with 2D
DWs with internal degrees of freedom [36], to consider
effects due to a finite T [37], as well as the interplay of ξwith
the DW and BL widths. Our model should find applications
in modeling DW dynamics in a wide range of contexts where
DW velocities are not so high that spin wave emission from
the moving DW [38–40] (not captured by any model which
limits the description to the degrees of freedom of the DW)
becomes important, including creep motion of DWs [5] and
Barkhausen noise [6]. Finally, extensions to bubble geom-
etry would be useful, e.g., for studying effects due to the
Dzyaloshinskii-Moriya interaction [41,42].
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