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We investigate the spin-Nernst effect in time-reversal-invariant topological superconductors, and show
that it provides smoking-gun evidence for helical Cooper pairs. The spin-Nernst effect stems from
asymmetric, in spin space, scattering of quasiparticles at nonmagnetic impurities, and generates a
transverse spin current by the temperature gradient. Both the sign and the magnitude of the effect
sensitively depend on the scattering phase shift at impurity sites. Therefore the spin-Nernst effect is
uniquely suitable for identifying time-reversal-invariant topological superconducting orders.
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Introduction.—In the last decade many researchers
investigated topological superconductors (TSCs) with an
eye on their application to future technologies such as
quantum computation and spintronics [1–7]. These materi-
als are characterized by nontrivial topology of the quasi-
particle wave functions, which are responsible for the
existence of Majorana quasiparticles [8–10]. The signatures
of nontrivial topology appear in transport phenomena,
including the quantization of thermal Hall conductivity
and tunneling conductance [11–14].
TSCs can be divided into subclasses according to their

behavior under time reversal. Condensate in TSCs with
spontaneously broken time-reversal symmetry is formed
from chiral Cooper pairs with a fixed angular momentum.
The key ingredients of time-reversal-invariant (TRI) TSCs
are helical Cooper pairs, which are equal mixtures of time-
reversed copies of chiral Cooper pairs. If TRI TSCs have an
additional discrete symmetry, such as a mirror plane, this
symmetry may protect a pair of nodal points in the
superconducting gap. In the vicinity of each node, the
low-energy Bogoliubov quasiparticles behave as Dirac
fermions, and the corresponding class of materials is
referred to as Dirac superconductors (DSCs). The B phase
of the superfluid 3He, the fully gapped Balian–Werthamer
(BW) state, where all three spin components of the triplet
order parameter occur in equal measure, is a prototype of
TRI TSCs [15–17]. In superconducting materials, there are
several candidates for TRI TSCs and DSCs, including
MxBi2Se3 (M ¼ Cu; Sr;Nb) [18–31], U1−xThxBe13 [32–
36], and Cd3As2 [37–39]. Even though a full range of
experimental probes has been used for these compounds,
including heat capacity, thermal transport, nuclear mag-
netic resonance, tunneling spectroscopy, and other mea-
surements, the unequivocal “smoking gun” evidence for
TSCs and DSCs remains elusive. Hence, it is indispensable

to elucidate physical properties directly associated with
helical Cooper pairs.
Among various transport phenomena, the Nernst effect,

the transverse electric field generated by a thermal gradient
in the presence of a magnetic field, is a powerful tool to
capture the symmetry of superconducting order parameters
[40]. The Nernst effect induced by flux flow and super-
conducting fluctuations has been extensively investigated
in a variety of materials [41–47]. In URu2Si2, the giant
Nernst effect observed above the superconducting transi-
tion temperature was attributed to the fluctuations of
preformed chiral Cooper pairs [48,49]. Thus, the Nernst
effect provides a direct probe for Cooper pairs with
spontaneously broken time-reversal symmetry.
In this Letter, we show that the spin Nernst effect (SNE),

the transverse spin current induced by a thermal gradient
without an applied magnetic field, is a signature of TRI
TSCs. On the basis of the quasiclassical transport theory,
we demonstrate that in TRI TSCs the impurity scattering of
quasiparticles induces the SNE, which reflects the helical
nature of the Cooper pairs, schematically shown in Fig. 1.
We reiterate that the SNE in TRI TSCs essentially differs

from the conventional Nernst effect due to superconducting
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FIG. 1. Schematic image of the SNE in TRI TSCs: spin-
dependent asymmetric scattering of the quasiparticles reflecting
coupling to different angular momentum components of the
Cooper pairs leads to transverse spin current.
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fluctuations or vortex motion because (i) a magnetic field is
unnecessary, and (ii) the SNE is the bulk transport of
homogeneous superconductors below the superconducting
transition temperature Tc. As the SNE arises purely due to
the symmetry of Cooper pairs, it provides smoking-gun
evidence for helical Cooper pairs in TRI TSCs.
Quasiclassical Keldysh transport theory.—The quasi-

classical approximation, valid when ðkFξÞ−1 ≪ 1, where
kF is the Fermi momentum and ξ is the coherence length, is
applicable to many superconductors and provides a power-
ful tool to investigate their transport properties. These are
determined from the quasiclassical Green’s function
ǧðϵ; x; kFÞ, which is an 8 × 8 matrix in the Keldysh and
Nambu (particle-hole) space, defined for each kF [50,51].
To leading order in ðkFξÞ−1 the Green’s function obeys the
quasiclassical Eilenberger equation [52],

½ϵτ̌z − Δ̌ − σ̌imp; ǧ� þ ivF · ∇ǧ ¼ 0; ð1Þ

supplemented by the normalization condition ǧ2 ¼ −π2
[50,53]. In Eq. (1), τ̌iði ¼ x; y; zÞ are the Pauli matrices in
the Nambu space, vF is the Fermi velocity of normal
quasiparticles, σ̌imp is the impurity self-energy, and Δ̌ is the
superconducting order parameter matrix, determined from
the self-consistency equation [54]. We set ℏ ¼ kB ¼ 1, and
give the details of other notation and formulation in the
Supplemental Material [53].
In the quasiclassical limit, the spin current is obtained

from the Keldysh component gK of the Green’s function ǧ
as

Jσμ ¼ 1

2
NðϵFÞ

Z
dϵ
4πi

hTr½vFσμτzgK�iFS; ð2Þ

where NðϵFÞ is the normal-state density of states at the
Fermi energy and σμðμ ¼ x; y; zÞ is the spin operator in the
Nambu space. h…iFS denotes the normalized Fermi surface
average. We compute the linear, in the temperature gradient
(−∇T), correction to gK , accounting for impurity scattering
in the self-consistent T-matrix approximation (SCTA)
[55,56]. When implemented in the Keldysh formalism,
the anomalous self-energy contains the contribution of the
vertex corrections [53]. These vertex corrections are essen-
tial for skew scattering [57] and generation of the transverse
spin current defined in Eq. (2).
In the following we assume the δ-function individual

impurity potential with the strength V imp and the density of
impurities nimp. SCTA gives for the impurity self-energy

σ̌impðϵÞ ¼ −Γimp

�
cot δþ

�
ǧ
π

�
FS

�
−1
: ð3Þ

Here, we defined the normal-state scattering rate
Γimp ¼ fnimp=½πNðϵFÞ�g and the scattering phase shift
cot δ ¼ −1=½πNðϵFÞV imp�. The limit δ → 0 (δ → π=2)

corresponds to the Born (unitarity) scattering. We then
compute the tensor of spin-Nernst coefficients (SNCs), α

σμ
jl ,

from the linear response to the thermal gradient,

J
σμ
j ¼ α

σμ
jl ð−∂lTÞ: ð4Þ

This expression neglects a possible normal-state spin-
Nernst coefficient due to spin-orbit interaction, but this
contribution is expected to be very small for Tc ≪ ESO,
where ESO ∼ 103 K is the characteristic spin-orbital energy
scale [58,59].
SNE in DSCs.—As a prototype of TRI TSCs, we

consider the three-dimensional helical p-wave supercon-
ducting gap on the spherical Fermi surface, where the d
vector is given by

dDSC;xyðkÞ ¼
Δ
kF

ðkx; ky; 0Þ: ð5Þ

This is an example of a DSC since the gap has two Dirac
points at the south and north poles on the Fermi sphere.
This simple gap structure enables one to capture essence of
the SNE in TRI TSCs. The same model describes the low-
energy physics of DSCs in Cd3As2, and the results below
are directly applicable to this material [39]. The spin
projection σz is a good quantum number for Eq. (5), and
the quasiparticle states are block diagonal in terms of
σz ¼ �1. The Cooper pairs in the σz ¼ þ1 (σz ¼ −1)
sector condense into the Lz ¼ −1 (Lz ¼ þ1) eigenstates of
the angular momentum kx − iky (kx þ iky). Each sector is
chiral and breaks time reversal and mirror symmetries.
These broken symmetries give rise to the asymmetric
quasiparticle scattering at impurities, which induces a
transverse flow of quasiparticles along the direction deter-
mined by the sign of chirality [60–63]. Since the helical
pairing state or DSCs can be regarded as the superposition
of chiral Cooper pairs with opposite chiralities in different
spin sectors, asymmetric scattering on nonmagnetic impu-
rities becomes spin selective and thus generates the trans-
verse spin current (Fig. 1).
Motivated by this, we consider the spin-Nernst signal for

the temperature gradient along the y direction. Figure 2(a)
shows the temperature dependence of the spin-Nernst
coefficient for different impurity scattering phase shifts.
The SNC is sensitive to the scattering phase shift. Both the
low-temperature slope and the maximum value below Tc
increase as the phase shift approaches the unitarity limit,
δ → π=2. Remarkably, the sign of the SNC changes as a
function of δ.
This evolution can be understood from the low-

temperature expansion of gK in Eq. (2) [55]. Since the
nonequilibrium Keldysh Green’s function is proportional to
sech2ðϵ=2TÞ, it entails a frequency cutoff ϵ ∼ T that serves
as a small parameter at low T. We find for the SNC in clean
DSCs as T → 0 [53],
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ασzxy
NðϵFÞv2F

¼−
π2γΓimpT

12

cot2δ−n2s
ðcot2δþn2sÞ2

×

� jdeqðkFÞj2
½jdeqðkFÞj2þγ2�3=2

�
2

FS

þOðT2;Γ3
impÞ: ð6Þ

The complete expression of the SNC, including higher-order
terms for Γimp, is given in the SupplementalMaterial [53]. In
Eq. (6), we introduced the residual quasiparticle DOS at
the Fermi energy in the superconducting state, ns¼
Nsð0Þ=NðϵFÞ¼−ð1=4πÞhTrIm½τzgReqð0Þ�iFS, and the impu-

rity self-energy at equilibrium, γ≡ði=4ÞTr½τzσRimp;eqð0Þ�. It
is seen from Fig. 2(b) that as the phase shift approaches the
unitarity limit, the spectral weight around the coherence
peaks ϵ ≈�jΔeqj reduces, while Nsð0Þ increases. The
transfer of the spectral weight in the DOS reflects the
formation of the impurity bands; see discussion below.
It is clear from Eq. (6) that, in agreement with Fig. 2(a),

the SNC changes the sign as a function of the scattering
phase shift from negative at weak scattering, cot δ ≫ 1, to
positive near unitarity, cot δ → 0. This behavior is shown in
Fig. 2(c), where the critical phase shift is δc ≃ 0.94 × ðπ=2Þ
for Γimp ¼ 0.01πTc;clean, and δc ≃ 0.88 × ðπ=2Þ for Γimp ¼
0.04πTc;clean. Expansion in the phase shift at low energies
near the unitarity limit gives the sign change occurring at

δc ¼ ðπ=2Þð1 − χcÞ with χc ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γimp=πΔeqðT ¼ 0Þp

in
qualitative agreement with the numerical results.
Another striking feature in Fig. 2(c) is a large peak in

SNC at the intermediate phase shift. Recall that the trans-
verse transport coefficients reflect the asymmetry of scat-
tering convoluted with the variation of the density of states
near the Fermi surface [64]. In unconventional super-
conductors, the impurity potential gives rise to the impurity
quasibound (resonant) states, whose position shifts from
the gap edge to midgap as the phase shifts approaches the
unitarity limit [see Fig. 2(b)]. For finite impurity concen-
trations, these states (symmetrically positioned at the
electron- and hole-sides of the spectrum) broaden into
the impurity bands. Sizeable DOS at the Fermi level first
appears when the impurity band touches the Fermi energy.
At that point the strong variation of the DOS with the
energy amplifies the scattering asymmetry near the Fermi
energy. A quantitative measure of when this happens is the
band curvature at the origin, ðd2Ns=dϵ2Þjϵ¼0, which is
maximal when the bands first reach ϵ ¼ 0. The correspond-
ing phase shift is estimated to be δ ¼ ðπ=2Þð1 − 2χcÞ. As
shown in Figs. 2(c) and 2(d), the peak in the band curvature
coincides with the peak in SNC in Fig. 2(c).
Since the mechanism for the SNE described here relies

on the structure of the emergent impurity-induced bands,
the same picture should be applicable to fully gapped TRI
TSCs, which are considered below.
The BW state in disordered media.—A well-studied

example of fully gapped TRI TSCs is the BW state,
dBWðkÞ ¼ ðΔ=kFÞðkx; ky; kzÞ, realized in the B phase of
the superfluid 3He [15,16]. Here we consider the BW state
in the presence of nonmagnetic impurities. At the quali-
tative level, the SNE in the BW state shares its origin with
that in DSCs discussed above. The BW state can be viewed
as the superposition of three helical p-wave pairing
channels,

dBW ¼ 1

2
ðdDSC;xy þ dDSC;yz þ dDSC;zxÞ; ð7Þ

with dDSC;xyðkÞ ¼ ðΔ=kFÞðkx; ky; 0Þ, dDSC;zxðkÞ ¼
ðΔ=kFÞðkx; 0; kzÞ, and dDSC;yzðkÞ ¼ ðΔ=kFÞð0; ky; kzÞ.
Figure 3 shows the temperature dependences of the SNC
for several phase shifts, which are qualitatively same as
those in DSCs discussed above.
The spin structure of these components gives rise to the

SNE similar to the case of DSCs, with the result shown in
Fig. 3(a). The SO(3) symmetry preserved in the BW state
dictates the relations between the tensor elements of the
SNC,

ασzxy ¼ ασxyz ¼ α
σy
zx ¼ −ασzyx ¼ −ασxzy ¼ −ασyxz: ð8Þ

These relations are also maintained by the Au irreducible
representation of the Oh crystals. Equation (8) can be
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FIG. 2. (a) Temperature dependences of the SNC (ασzxy) and
(b) quasiparticle DOS in DSCs at T ¼ 0.01πTc;clean with a critical
temperature at the clean limit Tc;clean. For panels (a),(b), we set
the impurity scattering rate Γimp ¼ 0.04πTc;clean, and the scatter-
ing phase shift δ ¼ ðπ=12Þ (red), π=6 (green), π=4 (blue), π=3
(purple), and π=2 (light blue). (c) The scattering phase-shift
dependence of ασzxy in DSCs at T ¼ 0.01Tc;clean and (d) the
second-order derivative of the DOS with respect to ϵ. For panels
(c),(d), we set the impurity scattering rate Γimp ¼ 0.01πTc;clean for
the red curves, and Γimp ¼ 0.04πTc;clean for the green curves,
respectively. The inset in panel (d) shows the phase-shift
dependence of the residual DOS Nsð0Þ.
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understood from Eq. (7): When the temperature gradient is
applied along the y direction, dDSC;xy (dDSC;yz) pairing gives
rise to the spin current Jσz (Jσx) along the x direction (z
direction).
As in DSCs, the quasiparticle DOS in the BW state with

nonmagnetic impurities has impurity bound states, where
the spectral weight is transferred from the coherence peaks
around ϵ ≈�Δ to the lower energies [Fig. 3(b)]. The width
of the band formed around these resonance energies
depends on the phase shift of the scattering as well as
the impurity concentration. When the impurity bands reach
ϵ ¼ 0, the system realizes the “gapless” BW state. Even
though the BW state in the clean limit is fully gapped, the
quasiparticles of the impurity bound states are responsible
for the SNE. Notably, in δ → π=2, the SNCs show the
T-linear behavior at the low temperature, which we
attribute to the finite impurity-induced DOS at the Fermi
level [see Figs. 3(a) and 3(b)].
Application to candidate materials.—Awell-established

example of gapped TRI TSCs is the B phase of superfluid
3He. For 3He, strong (near-unitarity) impurity scattering can
be engineered by highly porous silica aerogel [65–67],
realizing the “dirty” BW state [68–71]. The aerogel is
composed of silica strands (diameter 30 Å), separated by
the mean distance that is comparable to or less than the
superfluid coherence length. The spin flip scattering by
magnetic surface solid is suppressed by coating aerogel
with a few layers of 4He atoms [72]. Hence, the properties
of the liquid 3He in the aerogel are well described by the
homogeneous scattering model [68], where the aerogel is
represented by randomly distributed nonmagnetic scatter-
ing centers. The model has two parameters: the phase shift
δ and the mean free path l determined by the aerogel
geometry. Several experiments identified the “gapless”
BW state over the pressure range p ¼ 6–34 bar [73–76],
which is in good agreement with the homogeneous scatter-
ing model with δ → π=2 and l ≈ 1800 Å for 98% porosity
[68–70]. Then the normal-state scattering rate for
the aerogel is estimated as Γimp ¼ ℏvF=ð2l sin2 δÞ ≈

0.1–0.2πTc;clean. We find the qualitatively same behavior
of the SNC as that in Fig. 3(a) even for such large Γimp.
Hence, the spin-Nernst effect can be utilized as a thermal
generation of quasiparticle-mediated spin current in super-
fluid 3He.
Another interesting example is the heavy-fermion super-

conductor U1−xThxBe13, discovered in the 1980s [77]. It is
a spin-triplet superconductor with three distinct super-
conducting phases in the x − T plane. At x ¼ 0, the
“parent” material UBe13 undergoes superconducting phase
transition at T2cðx ¼ 0Þ ∼ 0.85 K. For 0 ≤ x < 0.02, the
critical temperature T2cðxÞ decreases with increasing Th
concentration, x. This superconducting phase is referred to
as the C phase. In a narrow dopant region 0.02 ≤ x ≤ 0.04,
an additional superconducting transition occurs at
T1cðxÞ ≥ T2cðxÞ, and the time-reversal symmetry is spon-
taneously broken below T2cðxÞ [78–80]. The supercon-
ducting phase in T2cðxÞ ≤ T ≤ T1cðxÞ is referred to as the
A, phase and the time-reversal symmetry broken phase is
called the B phase [34,36].
In spite of many efforts, the pairing symmetry of this

material remains unresolved. One possible scenario is an
accidental degeneracy of the order parameters belonging to
different irreducible representations of the Oh group [35].
Another possibility is the realization of the odd-parity Eu
state [33]. Both scenarios predict DSCs in the A phase and
TRI TSCs in the C phase.
However, the onset of the Eu state is accompanied by a

nematic phase transition with broken rotational symmetry,
leading to a different type of helical Cooper pairing from
the accidental scenario [32]. The Dirac superconducting A
phase supported by the accidental scenario manifests a
finite SNC ασzxy, α

σx
yz, and α

σy
zx, whereas only α

σz
xy is finite in the

Eu state. For the TRI TSC C phase, the nematicity in the Eu
state leads to the anisotropy of the SNC, while there is no
anisotropy of the SNC in the same phase within the
accidental scenario. Thus, measurements of the SNE
presented in this paper provide smoking-gun evidence
for identifying the superconducting symmetry in
U1−xThxBe13 and other complex materials.
We note that in the weak coupling limit the form of the

gap function fully determines the topological properties of
the superconducting state (for a given Fermi surface).
Therefore our results remain valid for systems where the
parity of the superconducting state is determined, in real
space, by orbital mixing, such as Cd3As2 and doped
Bi2Se3. In the momentum space these order parameters
map on the examples considered above [28,37].
Conclusion.—We established that the SNE provides

direct evidence for helical Cooper pairs in TRI TSCs.
The origin of this SNE is the spin-dependent scattering of
quasiparticles through the helical Cooper pairs on non-
magnetic impurities. The SNE has strong dependence on
the scattering phase shift, and changes the sign of the SNC
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FIG. 3. (a) The temperature dependences of the SNC and
(b) the DOS in the dirty BW state at T ¼ 0.01Tc;clean. We set the
impurity scattering rate Γimp ¼ 0.04πTc;clean and the phase shift
δ ¼ ðπ=12Þ; ðπ=6Þ; ðπ=4Þ; ðπ=3Þ; ðπ=2Þ. The unitarity limit δ →
π=2 describes the gapless BW state.
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on approaching the unitarity limit. The SNE is detectable in
the TSC candidate materials, and its experimental verifi-
cation is feasible.
We finally comment on an interesting future study. In

this letter, we focused on the SNE in bulk, but the SNE is
also possible in the surfaces. In the surfaces of the TRI
TSCs, the low-energy quasiparticles behave as helical
fermions and carry the circulating spin current [81]. The
SNE at the surfaces is expected through helical fermions or
the parity mixing of the order parameters [82].
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