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We develop the theory of anomalous elasticity in two-dimensional flexible materials with orthorhombic
crystal symmetry. Remarkably, in the universal region, where characteristic length scales are larger than the
rather small Ginzburg scale ∼10 nm, these materials possess an infinite set of flat phases. These phases
corresponds to a stable line of fixed points and are connected by an emergent continuous symmetry. This
symmetry enforces power law scaling with momentum of the anisotropic bending rigidity and Young’s
modulus, controlled by a single universal exponent—the very same along the whole line of fixed points.
These anisotropic flat phases are uniquely labeled by the ratio of absolute Poisson’s ratios. We apply our
theory to phosphorene.
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The discovery of graphene [1–3] and closely related
atomically thick materials [4] led to the field of flexible
two-dimensional (2D) materials [5]. The hexagonal crystal
symmetry of graphene results in elastic and electronic
transport properties identical to those of isotropic systems.
More recently, research has shifted towards other 2D
materials, including 2D black phosphorus (phosphorene)
[6,7], transition metal dichalcogenide monolayers [8,9],
and metal monochalcogenide monolayers [10,11]. Because
of their different crystal structure, these 2D materials
demonstrate anisotropic physical properties, such as elec-
tron and thermal transport, optical absorption, photolume-
nescence, Raman scattering, and—as will be important in
this Letter—elastic response. In particular, for 2D materials
with orthorhombic crystal symmetry, e.g., boat and wash-
board graphane [12], phosphorene, metal monochalcoge-
nide monolayers (SiS, SiSe, GeS, GeSe, SnS, and SnSe),
monolayers GeAs2, WTe2, ZrTe5, Ta2NiS5, etc. [13], the
elastic free energy does not reduce to that of an isotropic
crystalline membrane and results in anisotropic Young’s
moduli and Poisson’s ratios.
The idea of anomalous elasticity of isotropic crystalline

membranes dates back to the seminal work by Nelson and
Peliti [14]. Later it was found that the competition between
anomalous elasticity and thermal fluctuations in clean
membranes leads to the existence of a transition from a
flat to a crumpled phase with increasing temperature, T
[15–20]. There is still substantial interest in furthering our
understanding of clean membranes [21–31].
In this Letter we develop the theory of anomalous

elasticity of 2D membranes with orthorhombic crystal
symmetry. Our theory is focused on the universal regime

when the typical size L of the membrane is large in
comparison with the so-called Ginzburg scale, q−1� (see
below). As we show, for the mentioned 2D materials
q−1� ∼ 10 nm is extremely small, making the universal
regime highly relevant.
The theory of anomalous elasticity predicts that, in the

universal regime, L ≫ q−1� , the physical properties of iso-
tropic 2D membranes are determined by the dimensionless
ratio of the bending rigidity ϰ and the temperature T. In the
flat phase of the membrane, this parameter exhibits power-
law scaling behavior with the system size ϰ=T ∝ Lη. It
behaves as a coupling constant or effective charge of a
renormalizable theory. A universal exponent η depends
solely on the dimensions of the membrane D and of the
embedding space d, respectively [17]. The situation of
physical interest is, of course,D ¼ 2 and d ¼ 3. The physics
of an anisotropicmembrane, where the bending rigidity ϰαβ
becomes a symmetric tensor, with α; β ∈ fx; yg, is then
described by several effective charges. Hence, the degree and
the nature of the anisotropy can change as one probes
phenomena on different length scales. An analysis in D ¼
4 − ϵwith ϵ ≪ 1 yields that the membrane becomes asymp-
totically isotropic: ϰαβ → ϰδαβ for L → ∞ [32]. We show
this is not the case for the physically relevant case of an
orthorhombic crystalline membrane with D ¼ 2. We dem-
onstrate that in the universal regime such a membrane has a
discrete hidden symmetry preserving the degree of ortho-
rhombicity, γ ≡ ðϰxx=ϰyyÞ1=4. At L → ∞ this discrete sym-
metry transforms into an emergent continuous symmetry that
controls anisotropy effects of orthorhombic 2D membranes.
The latter are not captured by the frequently used
ϵ-expansion near dimension D ¼ 4.
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More specifically, we predict that for L ≫ q−1� , in
contrast to graphene and dichalcogenide monolayers,
orthorhombic 2D materials possess an infinite set of flat
phases with universal size-dependent elastic properties
preserving the orthorhombic anisotropy. Remarkably, all
these phases are connected to the flat state of an isotropic
membrane by the emergent continuous symmetry.
The latter ensures that for all phases the anisotropic

anomalous Hooke’s law is controlled by the same exponent
η known from isotropic membranes [33]. Analyzing the
effective interaction of soft flexural phonons, these results
are obtained from renormalization group (RG) equations
that govern scaling of the bending rigidity tensor with L.
We obtain a line of stable fixed points that describes the
infinite set of anisotropic flat phases, corresponding to
different parameters γ (see Fig. 1). In all cases the angular-
dependent bending rigidity, ϰðθkÞ ¼ ϰαβk̂

2
αk̂

2
β, with k̂ ¼

ðcos θk; sin θkÞ the unit vector along the momentum k,
flows to an elliptic dependence on θk controlled by γ. The
power law scaling with k is then governed by the exponent
η (see Fig. 1 and Eqs. (5)). Finally, we study the transition
to a tubular phase, where an anisotropic 2D membrane is
crumpled along one direction [32,34–37]. While we show
that for a generic anisotropic membrane such a transition
should formally occur with increasing T, for 2D materials
listed above it happens at unphysically high temperatures
(of the order of tens of eV).
Model.—Following Ref. [32], the free energy describing

thermal fluctuations in the flat phase of a 2D membrane
with orthorhombic crystal symmetry can be written as

F ¼ R
d2xϰð0Þαβ ð∇2

αrÞð∇2
βrÞ=2þ F el. Here, r is a d ¼ dc þ

2 dimensional vector parametrizing the membrane and ϰð0Þαβ

is bare bending rigidity. The elastic crystalline energy,
F el ¼

R
d2x½c11u2xx þ c22u2yy þ 2c12uxxuyy þ 4c66u2xy�=2,

is expressed via the strain tensor uαβ ¼ ð∂αr∂βr − δαβÞ=2.
Here fcαβ; c66g are the elastic moduli of orthorhombic 2D

crystalline material. For physical membranes dc ¼ 1, while
anharmonic effects can be efficiently described in terms of
a standard expansion in 1=dc [17].

In the case of ϰð0Þxx ¼ ϰð0Þyy and c11 ¼ c22, the tetragonal
crystal symmetry holds. For graphene which has hexagonal

symmetry, the bending energy is isotropic, ϰð0Þxx ¼ ϰð0Þyy ¼
ϰð0Þxy together with c11 ¼ c22 ¼ c12 þ 2c66.
We use the parametrization of the coordinates:

r1 ¼ ξxxþ ux, r2 ¼ ξyyþ uy, and raþ2 ¼ ha with a ¼
1;…; dc. The vectors u ¼ fux; uyg and h ¼ fh1;…; hdcg
stand for in-plane and out-of-plane displacements, respec-
tively. Following Ref. [14], we focus on nonlinear elastic
contributions of the flexural, out-of-plane displacements h,
integrate out u, and obtain the effective free energy
written in terms of the out-of-plane phonons only:
F ¼ Rfdkgϰ0ðθkÞk4hkh−k=2þ F int. The term [38]

F int ¼
1

8

Z 0
fdqgY0ðθqÞ

����
Z

fdkg½k × q̂�2hkþqh−k

����
2

; ð1Þ

is responsible for effective h4 interaction of the flexural
modes. Here we define fdkg ¼ d2k=ð2πÞ2. The bare inter-
action of the h modes is anisotropic and determined by the
direction-dependent Young’s modulus Y0ðθqÞ [39,40].
Because of anharmonic flexural phonon interactions, the

bare coupling Y0ðθqÞ is screened, and the bending rigidity

tensor is subject to renormalization, ϰð0Þαβ → ϰαβ, an effect
that can be described with three running coupling constants
that we write as

γ ¼ ðϰxx=ϰyyÞ1=4; ϰ̃¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϰxxϰyy

p
; t¼ ϰ̃−ϰxy

3ϰ̃þϰxy
: ð2Þ

The asymmetry between x and y axes is controlled by γ
with γ ¼ 1 for tetragonal systems. t describes the tetragonal
distortion of the membrane’s bending energy. ϰ̃ is the
geometric mean bending rigidity. To ensure that ϰðθÞ > 0,
we consider 0 < γ < ∞ and jtj < 1.
Renormalization.—To solve the anharmonic problem it

is convenient to work in the rescaled coordinates,

x¼x0
ffiffiffi
γ

p
; y¼y0=

ffiffiffi
γ

p
; kx¼k0x=

ffiffiffi
γ

p
; ky¼k0y

ffiffiffi
γ

p
; ð3Þ

in which the bending energy acquires the tetragonal form,
ϰðθÞ ↦ ϰ̃ðθÞ ¼ ϰ̃½1þ t cosð4θÞ�=ð1þ tÞ. Note, even after
rescaling the Young’s modulus Ỹ0ðθÞ (and F ) still depends
on γ.
The necessary information can be extracted from the

correlation function hhaðkÞhbð−kÞi≡ Gkδab of the flexural
phonons. We have Gk ¼ T=½ϰ̃0ðθkÞk4� without anharmo-
nicity. The bare interaction Ỹ0ðθÞ gets screened by multiple
anharmonic scattering events that can be analyzed in
terms of RPA diagrams [see Fig. 2(a)]. Just like for
the isotropic case, the screened Young’s modulus ỸðθÞ

FIG. 1. Left: Sketch of the RG flow (arrows indicate direction
of increase of a system size L). Anisotropic flat phases on the line
of fixed points are marked by blue dots. The isotropic flat phase is
indicated by the white point. Right: The contour plot of schematic
change of the normalized bending rigidity k4ϰðθkÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

ϰxxϰyy
p

under the RG flow for ϰxx > ϰyy, Eq. (5). For ϰxx < ϰyy one
needs to interchange the axes kx and ky.
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becomes independent of Ỹ0ðθÞ in the universal regime,

q ≪ q� ∼ ½dcY0T=ϰ
ð0Þ
xx ϰ

ð0Þ
yy �1=2. Then, the remaining γ

dependence of the bare Young’s modulus Ỹ0ðθÞ gets
eliminated by screening effects, so that γ drops out of
the analysis completely and no longer gets renormalized. In
turn, the anisotropic screened interaction Ỹ ∼ q2 gives rise
to a renormalization of the bending rigidity that enters
Gk ¼ T=½ϰ̃ðθkÞk4� [see Fig. 2(b)]. This analysis can be
efficiently captured in terms of one loop RG flow equations
(see Supplemental Material [41]):

dγ
dΛ

¼ 0;
dt
dΛ

≃ −
2

dc
gðtÞ; d ln ϰ̃

dΛ
≃

2

dc
χðtÞ; ð4Þ

where Λ ¼ lnðq�=kÞ and q� plays a role of the ultraviolet
scale at which initial values of coupling constants are
defined: γð0Þ ¼ γ, tð0Þ ¼ t0, and ϰ̃ð0Þ ¼ ϰ̃0. We stress
that the first of the RG Eqs. (4) is exact rather than limited
to the one loop approximation [41]. Following Ref. [42],
we introduce the momentum-dependent stretching factor,
ξ2αðkÞ ¼ 1 − dc

R
kfdqgq2αGq that includes contributions

from the flexural phonons with momenta larger than a
given momentum k (in the rescaled coordinates),
γq2x þ q2y=γ > k2.
The functions gðtÞ and χðtÞ are shown in Fig. 3. The odd

function gðtÞ ensures that t always flows to zero, such that
ϰxy → ðϰxxϰyyÞ1=2 at long length scales. While this is also
obeyed in a tetragonal system, our long distance behavior is
by no means effectively tetragonal as ϰxx=ϰyy does not flow
to unity. The parameter γ is not renormalized and, thus,
determines an entire line of fixed points.
For small but finite t, it holds gðtÞ ≃ ð65t=54Þ þOðt3Þ

and χðtÞ≃1− ð65t=54Þþð145t2=162ÞþOðt3Þ (see Fig. 3).
Hence, the bending rigidity scales just like for isotropic
membranes at the infrared stable line of fixed points:
ϰ̃ ∼ ðq�=kÞη where η ≃ 2=dc. The line of fixed points is
reached asymptotically according to t ∼ ðk=q�Þψ , with
ψ ≃ 65=ð27dcÞ. This crossover exponent controls the rate
at which ϰðθÞ approaches the elliptical form; see Fig. 1.
We stress that the line of fixed points is unique to 2D

membranes. For membranes of higher dimensions,
D > 2, we find that dγ=dΛ ¼ −ADðD − 2Þðγ − 1Þ=dc for
jγ − 1j ≪ 1 [41]. Since AD > 0, a weak crystalline

anisotropy is irrelevant at long length scales unless
D ¼ 2, in accordance with RG analysis forD ¼ 4 − ϵ [32].
Beyond one loop.—The existence of the line of fixed

points at t ¼ 0 does not rely on the one loop approximation.
Generically, it is natural to assume that (i) the line of fixed
points remains stable (ψ > 0), (ii) there are no higher order
harmonics in ϰ̃ðθÞ are generated under the RG flow,
(iii) t ¼ 0 is the only fixed point for jtj < 1. Then, the
elasticity of 2D membranes with the orthorhombic crystal
symmetry in the universal regime can be deduced from
scaling (with rescaled momentum) of bending rigidity,
ϰ̃ ∼ ðq�=kÞη, and Young’s modulus, Ỹ ∼ ðk=q�Þ2−2η as for
isotropic membranes [15]. Making inverse rescaling to the
original coordinates, Eq. (3), we find in the infrared (IR)
limit (as t → 0):

ϰIRðkÞ ∼ ðγcos2θk þ γ−1sin2θkÞ2−η=2ðq�=kÞη;
YIRðkÞ ∼ ½ðγcos2θk þ γ−1sin2θkÞk2=q2��1−η: ð5Þ

The scaling of ϰIR and YIR with the absolute value of
momentum is controlled by the critical exponent η, known
for the isotropic membrane. For dc ≫ 1 it is given as η ¼
2=dc þ ½73 − 68ζð3Þ�=ð27d2cÞ þOð1=d3cÞ [28], whereas for
dc ¼ 1 the numerics predicts η ¼ 0.795� 0.01 [43].
Remarkably, ϰIRðkÞk4 and YIRðkÞ obey a continuous

symmetry under the affine transformation k → R−1
φ k, where

Rφ ¼
�

cosφ γ−1 sinφ

−γ sinφ cosφ

�
: ð6Þ

This is just the symmetry of the ellipse shown in Fig. 1. The
same continuous symmetry (x → Rφx) emerges for the free
energy F at the line of fixed points in the same IR limit,
t ¼ 0. We emphasize that the continuous symmetry (6) is

FIG. 2. (a) The RPA-type resummation for the Young’s
modulus. (b) The self-energy correction to first order in 1=dc.
The solid line represents the bare Green’s function Gk. The thin
(thick) dashed line denotes the bare (screened) interaction.

FIG. 3. The functions gðtÞ and χðtÞ, that enter the RG Eqs. (4),
and the function fðtÞ that determines transition temperature to the
tubular phase are shown.
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the emergent one. In the universal region, q < q�, and for
any nonzero t, F has the discrete symmetry Rπ=2 only (also
seen from Fig. 1). This discrete symmetry is responsible for
keeping γ unrenormalized.
Anomalous elasticity.—Under application of a tension σ

to an isotropic membrane, the power-law scaling of elastic
moduli with momentum is limited by kσ ∼ σ1=ð2−ηÞ which is
determined from the relation ϰ̃ðkσÞk2σ ∼ σ. This leads
to an anomalous Hooke’s law for tension-induced defor-
mations, δξ2 ∼ σ=ỸðkσÞ ∼ σα with α ¼ η=ð2 − ηÞ [18,19].
Performing the inverse of the rescaling (3), we find the
deformations along the x and y axes due to an unidirec-
tional tension σx as [41]

δξ2x ∼ γ−1ðσx=γÞα; δξ2y ∼ γðσx=γÞα: ð7Þ

Although the mechanics of a membrane on the line of the
fixed points remains anisotropic, the anomalous Hooke’s
law (7) is controlled by the same exponent α as for isotropic
membranes.
As expected, the membrane is deformed easier in the

direction for which the bending rigidity is smaller. For
example, from Eq. (7) it follows that δξ2y > δξ2x for γ > 1

(ϰð0Þxx > ϰð0Þyy ). We note that the power-law behavior (7)
holds for σx ≪ σ� ∼ ϰ̃0q2�. The results for unidirectional
tension along the y axis can be obtained from Eq. (7) under
the interchange x ↔ y and γ ↔ 1=γ.
The anomalous Hooke’s law (7) results in an anisotropic

negative absolute Poisson’s ratio. In the anisotropic flat
phase one finds for σx; σy ≪ σ�,

νx ¼ −
δξ2yðσxÞ
δξ2xðσxÞ

¼ γ2ν; νy ¼ −
δξ2xðσyÞ
δξ2yðσyÞ

¼ ν

γ2
: ð8Þ

Here, ν¼−1þ2=dc−a=d2cþOð1=d3cÞwith a≈1.76�0.02
denotes the absolute Poisson’s ratio for the isotropic
membrane [28]. Since νx=νy ¼ γ4, the measurement of
the absolute Poisson’s ratios in the regime of anomalous
Hooke’s law, σx; σy ≪ σ�, allows one to uniquely charac-
terize the anisotropy in the bending rigidity.
Tubular phase.—The dependence ξ2xðkÞ can be cast in

the form of the RG equation,

dξ2x
dΛ

¼ − dcT

4πϰ3=4xx ϰ1=4yy

�
1þ t
1 − t

�
1=2

; ξ2xðΛ ¼ 0Þ ¼ 1: ð9Þ

The RG equation for ξ2y can be obtained from Eq. (9) by
interchanging x and y. At low temperatures the flat phase,
in which ξ2αðkÞ is positive for all k < q�, is realized.
For γ < 1, with increase of temperature ξ2xðkÞ vanishes at
some finite value of k. At the same time ξ2yðkÞ is still
positive for all k < q�. Therefore, the tubular phase exists

above the transition temperature Tx ¼ Tð0Þ
x fðt0Þ where

Tð0Þ
x ¼ ð8π=d2cÞ½ϰð0Þ3xx ϰð0Þyy �1=4 stands for the temperature

of the crumpling transition at t0 ¼ 0. The crumpling
occurs along the direction x that corresponds to the

smaller bare bending rigidity, ϰð0Þxx < ϰð0Þyy . The function
fðtÞ can be found from RG equations (4) and (9) [41].
It is a monotonically decreasing function with
fðt → −1Þ ∼ ð1þ tÞ−1, fð0Þ ¼ 1, and fð1Þ ≈ 0.3; see
Fig. 3. Further increasing temperature the tubular phase
experiences a crumpling transition [34,36]. For γ < 1 the
tubular phase at T > Ty corresponds to ξ2yðk ¼ 0Þ ¼ 0. The
transition temperature Ty can be obtained from the expres-
sion for Tx upon interchange x and y.
Discussion.—As an illustration of our theory we apply it

to 2D black phosphorus. We are not aware of direct
measurements of elastic and bending moduli of phosphor-
ene. Recent numerical calculations report c11 ≈ 105.2,
c22 ≈ 26.2, c12 ≈ 18.4, and c66 ≈ 22.4 (measured in

N=m) [44] as well as ϰð0Þxx ≈ 8.0 and ϰð0Þyy ≈ 4.8 eV [45].
This yields q−1� ≈ 10 nm. Hence, anomalous elasticity
should always dominate the anisotropic elastic properties
of available experimentally samples.
For 2D black phosphorus our theory predicts that the

nonlinear Hooke’s law, Eq. (7), and negative absolute
Poisson’s ratios, Eq. (8), should be observable for tensions
smaller than σ� ≈ 0.01 N=m. Although we are not aware of
measurements of strain-stress dependence of phosphorene
we believe that it can be performed in a way similar to
graphene [46]. There are several computations of the
Poisson’s ratios for black phosphorus from first principles
[47,48]. While these results yield a negative Poisson’s
ratios of phosphorene, the numerical computation of the
Poisson’s ratio in the regime of low applied tensions,
σx;y ≪ σ�, may suffer from a problem with proper boun-
dary conditions in a finite size sample [27]. As in the case
of graphene, a direct measurement of the Poisson’s ratio of
phosphorene is challenging. We estimate the transition

temperature to the tubular phase, Tð0Þ
x , to be of the order of

50 eV, i.e., the anisotropic flat phase of phosphorene is
stable for all experimentally relevant T.
We also note that results (5) for the effective bending

rigidity and Young’s modulus are important for an electron
transport in 2D materials. Recently, the anisotropy of the
carrier mobility of 2D black phosphorus was studied using
an effective bending rigidity of precisely the asymptotic
form of Eq. (5) [49,50].
It is worthwhile mentioning that recently a distinct

anisotropic model which breaks the OðdÞ rotational invari-
ance in the embedded space has been studied [51]. It would
be interesting to analyze the effects of crystalline
anisotropy, discussed above, for the model of Ref. [51].
To summarize, we developed a theory of anomalous

elasticity in systems with orthorhombic crystal symmetry,
relevant for a large number of recently studied 2D flexible
materials. Our key finding is a discrete symmetry of the
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theory, existing in the universal regime and leading to an
infinite number of anisotropic flat phases in the long-
wave limit.
Remarkably, this result is specific for physical mem-

branes with D ¼ 2. The infrared physics of these flat
phases is controlled by the emergent continuous symmetry
that connects them to the flat phase of isotropic membrane.
The flat phases have an anisotropic bending rigidity and
Young’s modulus whereas the scaling with momentum is
the same as in the isotropic case. They are uniquely labeled
by the ratio of absolute Poisson’s ratios in the two
perpendicular directions. Our theory can easily be extended
to even less symmetric 2D materials with triclinic and
monoclinic crystal symmetries, e.g., monolayers ReS2,
ReSe2, GaTe, GeP, GeAs, SiP, SiAs, etc. Also, the effects
of in-plane and curvature disorder [25,29,42,52–61] can be
considered. The later was shown to be important for a
quantitative explanation of nonlinear strain-stress relation
in graphene [59].
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