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Here, we study and implement the temporal analog in time disordered sytems. A spatially homogeneous
medium is endowed with a time structure composed of randomly distributed temporal interfaces. This is
achieved through electrostriction between water surface and an electrode. The wave field observed is the
result of the interferences between reflected and refracted waves on the interfaces. Although no eigenmode
can be associated with the wave field, several common features between space and time emerge. The waves
grow exponentially depending on the disorder level in agreement with a 2D matrix evolution model such as
in the spatial case. The relative position of the momentum gap appearing in the time modulated systems
plays a central role in the wave field evolution. When tuning the excitation to compensate for the damping,
transient waves, localized in time, appear on the liquid surface. They result from a particular history of the
multiple interferences produced by a specific sequence of time boundaries.
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Spatial disorder induces significant changes in wave
propagation. Localization and wave focusing are observed
in many contexts [1] such as in quantum [2–5], optical [6–
8], acoustic [9], seismic [10], or hydrodynamic [11–13]
systems. When waves travel through a spatially disordered
medium interferences between counterpropagating waves
result in enhanced backscattering and weak localization
[6,14] at low disorder and Anderson localization [2,7] for
higher disorder.
Because time and space are, to some extent, interchange-

able in wave propagation, several phenomena observed in
spatially modulated systems have a temporal counterpart in
the time modulated ones [15–22]. Dynamical localization
have been previously studied in the momentum space with
quantum “kicked rotor” systems [23,24] or with quantum
particles confined spatially in a time varying potential
through a theoretical approach [25,26]. These systems are
modulated by a properly disordered pseudoperiodic driving
force and are localized in space and periodic in time.
The dynamic of these disordered systems is described by
the first derivative of the wave function given by the
Schrödinger equation and lead to localization in impulsion.
Here, we focus on waves governed by a wave equation

with a second derivative in time, such as Maxwell’s
equations, propagating in a spatially homogeneous medium
with disordered time varying properties. Such systems have
been studied theoretically very recently [27–29] identifying
universal statistics like exponential growth of the wave
energy. We implement experimentally this system with
water waves propagating in a medium submitted to a series
of disordered time interfaces actuated electrically. First, we
introduce a simple model of this system. We then show and
discuss the experimental results.

Our model is based on a spatially invariant system
submitted to a temporal modulation of its propagation
properties in the form of a Dirac comb with a controlled
level of time disorder. The Dirac comb is a standard model
used for spatially periodic potentials in which a modulated
potential is replaced with discrete boundary conditions
[30]. Figure 1(a) shows a schematics of a wave front
propagating in a 1D Dirac comb potential with the multiple
reflections and transmissions at each interface. Figure 1(b)
shows the time analog with the Dirac comb composed of
time interfaces induced by the periodic forcing. The time
reflections and transmissions on the interfaces generate
counterpropagating and copropagating waves, respecti-
vely [31,32]. In both cases, the wave field results from
interferences between multiple waves generated at the
interfaces.
We use liquids to study the effect of disorder in time

modulated systems. Large amplitude and versatile time
modulations can be easily implemented in liquids [31–35].
A time interface was obtained by applying a sudden vertical
jolt. An initial wave propagating on the liquid produced a
copropagating and a counterpropagating wave associated to
the transmitted and the reflected wave respectively [31].
Here, we use electrostriction to perform time interface. A
flat electrode is placed at a distance d above the grounded
conductive water surface [36–38]. The electric field exerts
an attractive force on the liquid surface modifying the wave
speed cðkÞ for a wave number k as

cðkÞ2 ¼ c20ðkÞ½1 − αðtÞ� with αðtÞ ¼ χ0VðtÞ2 and

χ0 ¼ ϵ=½ρc20ðkÞd2 tanhðkdÞ� : ð1Þ
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VðtÞ is the electric potential, c0 the wave speed for VðtÞ ¼
0 given by the gravity-capillary dispersion relation, ϵ the
dielectric permittivity of the air, and ρ the density of the
liquid [36–38]. Electric pulses of maximum amplitude
V0 and duration τp at successive discrete times Tn, n
being an integer, are modeled as a Dirac comb VðtÞ2 ¼
fV2

0τp
P

n≥0 δðt − TnÞ with f accounting for the shape of
the pulse. In the experiments, χ0V2

0 is typically of the order
of 0.3–0.5. Electrostriction offers extensive experimental
possibilities for controlling the temporal properties of a
medium with short-time response, huge amplitude varia-
tions and the ability to hold these changes over an arbi-
trary time.
The time evolution of the wave field ϕðk; tÞ of wave

vector k satisfies the nonhomogeneous wave equation [31]

∂2ϕ

∂t2 ðk; tÞ þ 2Γ
∂ϕ
∂t ðk; tÞ þ ω2

0ϕðk; tÞ

¼ ω2
0β0

X
n≥0

δðt − TnÞϕðk; tÞ ; ð2Þ

with ω0 ¼ c0k the wave angular frequency, β0 ¼ fχ0V2
0τp

and Γ the wave damping rate due to viscosity, Γ ¼ 2νk2

with ν being the kinematic viscosity of the liquid [39]. This
equation is the time counterpart of the Helmholtz equation

in k space. In practice, 1=Γ ≫ τp. The time interfaces can
be interpreted as sources proportional to the wave
field ϕðk; TnÞ at the time of the electric pulse [31]. We
solve Eq. (2) using a matrix transfer approach. The
evolution of the wave field is completely characteri-
zed by Ψ ¼ ½ϕ ð1=ω0Þð∂ϕ=∂tÞ�T. The crossing of the

time interface is given by K ¼
�

1 0

ω0β0 1

�
and the

propagation during ΔTn ¼ Tnþ1 − Tn between two
successive time interfaces is given by RðΔTnÞ ¼
e−ΓΔTn

�
cosðω0ΔTnÞ sinðω0ΔTnÞ
− sinðω0ΔTnÞ cosðω0ΔTnÞ

�
.

Thus, the evolution of the wave field satisfies Ψnþ1 ¼
MnΨn ¼ RðΔTnÞKΨn which by recurrence gives Ψnþ1 ¼
ðQp≤n MpÞΨ0. For a periodic excitation, ΔTn ¼ T,
M0 ¼ RðTÞK, and Ψnþ1 ¼ Mnþ1

0 Ψ0. Following Floquet
analysis, the two eigenvalues of M0 can be written
λj ¼ eðiμj−ΓÞT with μj a complex value and j ¼ 1 or 2.
Figure 1(c) shows the real part of ðiμj − ΓÞT (red line) and
its imaginary part (blue lines) as a function of k. Vertical
momentum k gaps associated with real values of μj are
visible. They are the analog of energy gaps in spatial
crystals. However, while the latter are forbidden admitting
only exponentially decaying solutions due to energy con-
servation, k gaps also allow exponentially increasing

(a)

(d) (e) (f)

(b) (c)

FIG. 1. Schematics of the wave front reflections and transmissions on a spatial Dirac comb (a) and a temporal one (b). (c) Floquet
diagram with vertical k gaps for a temporal Dirac comb with damping (V0 ¼ 8.0 kV, d ¼ 5 mm, and 2ν ¼ 7 × 10−6 m2=s).
(d) Schematics of the wave front propagation in a temporal Dirac comb with disorder obtained by shifting the time interfaces and
(e) associated electric forcing VðtÞ2. (f) Schematics of the experimental setup with the amplitude wave generator (AWG) controlling the
voltage of the electrode.
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solutions, as energy can be supplied by the forcing. For
ℜðiμj − ΓÞ > 0, these solutions lead to the parametric
Faraday instability at half the excitation frequency [33–
38,40]. It is interesting to note that Eq. (2) is also that of a
parametrically excited oscillator [41]. The time evolution of
the global wave field is thus identical to the motion of the
oscillator under a disordered parametric driving [42,43]. It
is thus fully characterized, at a given time, by only to two
parameters counterpart of the oscillator position and
velocity. For the waves, the multi-interference paths result-
ing from the splitting at each successive interface [see
Fig. 1(b)] is fully characterized by the two Cauchy
conditions Ψ at a given time. The contrast with the spatial
analog [Fig. 1(a)], which cannot be characterized by only
two parameters is probably related to time causality.
We now introduce disorder in the system as a random

time shift such that Tn ¼ ðnþ ϵnÞT, ϵn being a variable
taken independently and uniformly in ½ − ffiffiffi

3
p

σ;
ffiffiffi
3

p
σ� with

σ the disorder standard deviation [see Fig. 1(d)]. The
evolution matrices Mn are now random and correlated
depending on ϵnþ1 − ϵn. However, they can be redefined
uncorrelated by setting Ψ0

n ¼ Rð−ϵnTÞΨn and M0
n ¼

Rð−ϵnTÞMnRðϵnTÞ to apply the Fürstenberg theorem
[44] which states that Ψ0

n ≃ expðυnÞ for n large enough,
with υ being the Lyapunov exponent. This exponential
increase should lead to a statistical behavior similar to the
one observed in disordered spatial media [45]. A similar
exponential behavior has been also observed in the case
of parametrically excited oscillators in the presence of
noise [42,43].
The experimental setup consists of a 30 × 30 × 3 cm3

Plexiglas™ container filled with tap water [Fig. 1(e)]. A
transparent FTO electrode is suspended horizontally at a
distance d ¼ 5 mm over the electrically grounded water.
The electric potential VðtÞ consists of narrow peaks of
amplitudes V0 in the range of 6 to 8 kV with a repetition

rate of ω0=2π ¼ 60 Hz. The pulses are arch of sinus
of duration τp ¼ 0.4T and maximum amplitude V0 [see
Fig. 1(e)]. Matching the integrals VðtÞ2 to fit the Dirac
comb model gives β0 ¼ ð3τp=8Þχ0V2

0. An electrically
induced Faraday instability is triggered above a certain
V2
0 threshold (∼8 kV) with waves oscillating at half the

forcing frequency ω0=4π ¼ 30 Hz. The wave field is
measured from images taken at 90 fps using the deforma-
tion of a checkerboard pattern placed below [46]. The
amplitude of the Faraday waves AFðtÞ at time t is obtained
by applying a time filter at ω0=4π and spatial averaging
under the electrode.
We first focus on the effect of disorder on the exponential

growth of the wave. Figure 2(a) shows a typical experi-
mental measurement of the time evolution of AFðtÞ for
various disorder from σ ¼ 0 to 8.1 × 10−2. The amplitude
of the electric pulses V0 is set to 7 kV to trigger the Faraday
instability. In agreement with the Fürstenberg theorem [44],
the wave grows exponentially for small enough amplitudes
[AFðtÞ ≪ λF] when nonlinear hydrodynamic effects are
negligible. These exponential growths of the waves are a
statistical signature of the localization in these disordered
time varying media [27,28]. The fitted Lyapunov exponents
υ (dashed lines) decrease with increasing disorder. A
characteristic damping time 1=Γ ¼ 0.19 s is measured
from the decay of the Faraday waves when excitation is
stopped [see inset Fig. 2(a)]. This value used in the matrix
model yields to the Faraday threshold value at V0 ¼ 7 kV
which agrees with experiments. From the value of Γ we can
extract 2ν ¼ 7 × 10−6 m2=s that is higher than the expected
value for water but of the right order of magnitude [21].
Figure 2(b) shows the fitted exponents υ as a function

of the disorder level σ. Each sequence is run three times to
ensure that the measured growth rates are robust to
experimental drifts. The decrease of υ with increasing σ
can be reproduced by the numerical calculations with the

(a) (b)

FIG. 2. (a) Growth of the Faraday wave amplitude AFðtÞ with time for various disorder levels σ ¼ 0, 0.017, 0.046, 0.069, and 0.081.
The Lyapunov exponents υ are obtained from the exponential fits (dashed lines). Inset: decay of AFðtÞ with time when the forcing is
turned off. The damping rate Γ is obtained from an exponential fit (dashed line). (b) Fitted Lyapunov exponents υ as a function of σ for
various experiments. Numerical simulations from the matrix model (dotted line) taking into account the fitted Γ and theoretical model
(full line) based on the decrease of the forcing component at ω0.
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matrix model using the fitted damping rate Γ [see dashed
line Fig. 2(b)]. The disorder alters the otherwise perfectly
constructive interferences between the reflections and
transmissions on the time interfaces. This result can also
be interpreted in the spectral domain. Faraday instability is
directly related to the oscillation of VðtÞ2 at ω0. For small

disorder levels, υ is expected to follow υðσÞ ∝ ½cV2ðσÞ−
cV2
F�, with cV2ðσÞ and cV2

F being the Fourier components
of V2ðtÞ at ω0 in the presence of disorder and when forcing
is set at the Faraday threshold, respectively [47]. From

the central limit theorem, one can show that cV2ðσÞ ¼
cV2ð0Þsincð2π ffiffiffi

3
p

σÞ ≈ cV2ð0Þð1 − 2π2σ2Þ for small σ and a
large number of pulses. The resulting quadratic shape
υðσÞ ¼ υð0Þð1 − ζσ2Þ is in good agreement with exper-
imental findings and can be adjusted by setting υð0Þ ≈ 1.4
and ζ ≈ 120 [see Fig. 2(b) solid line].
We now focus on the experimental investigation of the

amplitude fluctuations of the wave field, which are known
to contain significant information on localization processes
[48]. Temporal fluctuations of the wave field can be
observed experimentally by tuning V0 at the Faraday
threshold for a chosen disorder level σ to achieve a null
Lyapunov exponent. The average energy gain induced by
the random time interfaces thus compensates for the
damping. Figure 3(a) shows the time evolution of the
amplitude of the Faraday waves AFðtÞ for a given pulse
sequence. The periodic excitation with added disorder lasts
160 s. Then, the disorder is removed (vertical line) from the

periodic excitation to measure the exponential growth of
the wave amplitude. Peaks extending over hundreds of
periods T are observed in the Faraday wave amplitude.
Figures 3(b) and 3(c)show the wave field at the water
surface during and out of a peak. When the same excitation
sequence is applied again, the measured wave fluctuations
[Fig. 3(d)] are highly correlated in both experiments. This
indicates that these fluctuations result from a specific
temporal sequence and that the multiwave interference
process which produces them is experimentally reproduc-
ible. Figure 3(e) shows the simulated fluctuations with the
same sequence using the matrix model. Although the
correlation is lower, the central double-peak feature is still
visible.
The disorder also significantly impacts the waves other

than the Faraday mode. Their experimental observation is,
however, hindered by the presence of the Faraday waves
but numerical simulations make their study possible (set-
ting Γ ¼ 0, V0 ¼ 8.0 kV, and d ¼ 5 mm). We study two
modes at the edge of the k gap, just inside (kin ¼
819.5 m−1) and outside (kout ¼ 819.2 m−1), respectively.
The wave amplitude at kin grows exponentially in all cases
for various disorder levels in agreement with the model
[Fig. 4(a)]. As the disorder level increases, the fitted
exponents υ first decrease at low disorder levels
(0 < σ < 0.025) and then increase at higher disorder levels
(σ > 0.025). Outside the k gap, the growth is also expo-
nential but, in this case, the exponent increases monoto-
nously with increasing disorder on the whole σ range,

(a)
(b) (c)

(d)

(e)

FIG. 3. (a) Time evolution of the Faraday wave amplitude AFðtÞ for a periodic excitation with a given disorder sequence with
σ ¼ 0.1=

ffiffiffi
3

p
. V0 is tuned at the Faraday instability threshold. The disorder is suppressed at t > 160 s (vertical line). (b),(c) Wave fields at

the Faraday frequency at time TA and TB, respectively. (d) AFðtÞ for the same excitation sequence as in (a). (e) Simulated time evolution
of AFðtÞ using the matrix model for the same excitation sequence as in (a) with V0 ¼ 7.322 kV, ν ¼ 7 × 10−6 m2=s, and d ¼ 5 mm.
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0 < σ < 0.1. The evolution of the exponents υ with σ are
plotted in Fig. 4(c) for the two cases kin (red crosses) and
kout (blue circles). The two curves superimpose in the
regions where υ increases with σ. The decreasing behavior
of υ at low disorder levels for kin is similar to the
experimental observations at the Faraday frequency [see
Figs. 2(a) and 2(b)]. These results are consistent with
an effective shrinking of the band gap as the periodi-
city deteriorates with the disorder. The validity of the
Fürstenberg theorem implies that the waves must grow
exponentially as observed either inside or outside the gap
for arbitrary disorder levels.
Contrary to spatial interfaces, the crossing of a time

interface is nonunitary meaning that the energy of the wave
field is not conserved across the boundary. From the
expression of the matrix K, in the case of a monochromatic
wave at ω0, an incident wave field defined by Ψ− ¼
½ϕ− ð1=ω0Þð∂ϕ−=∂tÞ�T produces an additional wave field
iω0β0½0 ð1=ω0Þð∂ϕ−=∂tÞ�T when crossing the interface
(using ϕ− ¼ ið1=ω0Þð∂ϕ−=∂tÞ). Using the superposition
principle, this can be written as the sum of a forward
propagating wave ðiω0β0=2Þ½ϕ− ð1=ω0Þð∂ϕ−=∂tÞ�T and a
time-reversed backward propagating one −ðiω0β0=2Þ×
½ϕ− − ð1=ω0Þð∂ϕ−=∂tÞ�T . This interpretation highlights
the momentum conservation with the symmetric produc-
tion of counterpropagative waves as well as the non-
conservation of energy with the creation of waves. For
an incident wave, the time interface can be characterized by
a transmission coefficient t ¼ 1þ ðiω0β0=2Þ and the
reflection one r ¼ −ðiω0β0=2Þ. The general expression
for the incident wave is two counterpropagating waves
ϕ−ðk; tÞ ¼ Aeik·rþiω0t þ Beik·r−iω0t with the total energy
E− ∝ jAj2 þ jBj2, A, and B being complex values. Just
after the boundary, the field becomes ϕþðkÞ ¼ ½tAþ
r�B�eik·rþiω0t þ ½rAþ t�B�eik·r−iω0t. For an incident propa-
gating wave (B ¼ 0), the time interface creates a standing
wave with limited amplitude in second order in ω0β0
(ΔE ¼ ðω2

0β
2
0=2ÞE−). For an incident standing wave, the

interface also generates a standing wave with an associated
energy ΔE ≈ ðω0β0 sinφÞE− with B ¼ Ae−iφ. It yields to

an energy increase or decay depending on the interference
with the incident wave field. To accumulate energy in the
time crystal, the phase condition φ must also be recovered
after the propagation between two successive interfaces.
The relative phase between the two counterpropagative
waves must thus change by 2πn, n being an integer between
two interfaces. This leads to frequencies nω0=2 in the k
gaps. The maximum energy output corresponds to the
Faraday instability at φ ≈ π=2. When moving to the k-gap
limits, smaller energy gains are achieved when crossing the
time interfaces, reaching zero at the k-gap limit (for φ ≈ 0
or πφ). Note that an associated symmetric overdamped
mode exists for the opposite phase [21]. The presence of a
random time shift between the interfaces results in fluctua-
tions of the phase-lock condition which in turn changes the
energy gain at each interface. For the Faraday mode, since
ΔE is maximal, any perturbation results in a decrease of
wave growth as observed experimentally [see Fig. 2(b)].
For modes such as kin for which is ΔE not maximal, the
output is more complex to infer due to the possible gain or
loss of energy resulting from the interplay the perturbed
phase shift acquired between two interfaces and the
amplitude of ΔE at the crossing of each interface [49].
In summary, time disorder induces temporal wave

energy characteristics that are similar to its spatial analog.
The exponential growth associated with a Lyapunov
exponent not depending on a particular realization of
disorder, is somewhat reminiscent of the one-dimensional
Anderson localization in space [27,28]. An interesting
perspective of these results would be to generalize the
effect of disorder on wave propagation with a spatio-
temporal disorder and to study the spatiotemporal locali-
zation of energy. In addition, this could be implemented
experimentally with the use of several electrodes driven
independently to realize time-varying inhomogeneous
energy landscapes.

The authors would like to thank Rémi Carminati for
fruitful discussions. We are thankful for the support of the
AXA Research Fund and the French National Research
Agency LABEX WIFI (ANR-10-LABX-24).

(a) (b) (c)

FIG. 4. Simulation of the wave growth with time for different disorder standard deviations for waves (a) just inside and (b) outside the
k gap with wave number kin ¼ 819.5 m−1 and kout ¼ 819.2 m−1, respectively (see insets) and σ ¼ 0.1; 0.6; 1.1; 1.6; 2.1; 7; 10 × 10−2
and σ ¼ 0.1; 3; 6 × 10−2, respectively. Linear fits (not shown) give the Lyapunov exponents υ. (c) Fitted exponents υ as a function of σ.
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