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Building upon the intrinsic properties of Navier-Stokes dynamics, namely the prevalence of intense
vortical structures and the interrelationship between vorticity and strain rate, we propose a simple
framework to quantify the extreme events and the smallest scales of turbulence. We demonstrate that our
approach is in excellent agreement with the best available data from direct numerical simulations of
isotropic turbulence, with Taylor-scale Reynolds numbers up to 1300. We additionally highlight a
shortcoming of prevailing intermittency models due to their disconnection from the observed correlation
between vorticity and strain. Our work accentuates the importance of this correlation as a crucial step in
developing an accurate understanding of intermittency in turbulence.
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A defining property of fluid turbulence is the presence
of a wide range of dynamically interacting scales that is
bounded from above by the largest scales, which are of the
order of flow dimension, and from below by the smallest
scales, determined by the diffusive action of molecular
viscosity. The largest scales transport the bulk of the flow
energy and momentum, whereas the smallest scales are
responsible for dissipating the flow energy into heat. The
net transfer of energy from large to small scales (onto
viscous dissipation) occurs via an energy cascade that
renders the averaged energy dissipation rate hϵi to become
independent of (kinematic) viscosity ν, which is also
termed “dissipative anomaly.” This phenomenology, first
proposed by Kolmogorov (1941) [1,2] (K41 henceforth),
identifies the smallest scales in the flow as

ηK ¼ ðν3=hϵiÞ1=4; τK ¼ ðν=hϵiÞ1=2; ð1Þ

where ηK and τK are the Kolmogorov length and time
scales, respectively.
While dissipative anomaly has been widely confirmed

[3–6], the overall mean-field description of K41 has
been invalidated [7,8]. This is because the fluctuations
of dissipation rate, and velocity gradients in general, exhibit
a high degree of spatial and temporal intermittency, with
large non-Gaussian excursions from its mean, that become

increasingly stronger with the Reynolds number [9–11].
Such extreme events play a crucial role in numerous
physical processes [12–15] and are at the center of
turbulence theories and models [7,8,16]. Simultaneously,
it follows that the smallest scales in the flow, putatively
corresponding to the extreme events, would be smaller than
the Kolmogorov scales defined by Eq. (1) [10,17–20].
Several phenomenological models have been proposed

to describe intermittency, with reasonable success in
characterizing the statistics of velocity increments for
inertial scales [7,8]. However, an accurate description of
the smallest scales has remained elusive for two reasons.
The first limitation is the insufficiency of well-resolved
data across a wide range of Reynolds numbers, since
capturing extreme events requires a very stringent small-
scale resolution [10,21,22]. The second limitation is that
of phenomenological models, which typically appeal to
adjustable parameters without a clear connection to the
dynamics of the Navier-Stokes equations. For instance, it is
well-known that extreme gradients are structurally arranged
in tubelike vortices [10,23–25]; however, prevailing inter-
mittency theories neither predict this feature nor take it into
account in a precise manner.
In this Letter, overcoming the aforementioned limita-

tions, we propose a simple framework to characterize the
smallest scales of turbulence based on vortical flow
structures while also directly connecting to the underlying
Navier-Stokes dynamics. Our predictions are validated with
data from state-of-the-art direct numerical simulations
(DNS) of the incompressible Navier-Stokes equations,
demonstrating excellent agreement. We additionally show
that predictions from prior intermittency models are recov-
ered as a limiting case of our framework, and discuss the
root of this discrepancy.
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The DNS data used here correspond to the canonical
setup of forced stationary isotropic turbulence in a periodic
domain [25], enabling the use of highly accurate Fourier
pseudospectral methods [26]. The key novelty of our data is
that we have simultaneously achieved both very high
Reynolds numbers and the prescribed small-scale resolu-
tion to accurately resolve the extreme events [10,22]. The
data correspond to the same Taylor-scale Reynolds number
Rλ range of 140 to 1300 as attained in recent studies
[27–31]. However, the run at Rλ ¼ 1300 is extended to a
grid of 18 4323 points (see [32])—the largest DNS run to
date—presenting a substantial improvement on any pre-
vious work investigating the smallest scales [10,21,33].
The resolution is kmaxηK ≈ 6 for Rλ ≤ 650, and kmaxηK ≈
4.5 for Rλ ¼ 1300, where kmax ¼

ffiffiffi
2

p
N=3 is the maximum

resolved wave number on a N3 grid. Convergence with
respect to resolution and statistical sampling has been
thoroughly established in previous works [10,22,32].
We first identify the intrinsic features of Navier-Stokes

dynamics that are essential to characterize the small scales.
From the velocity gradient tensor Aij ¼ ∂ui=∂xj, two
important descriptors of small-scale motions can be iden-
tified: the strain-rate tensor Sij ¼ ðAij þ AjiÞ=2, and the
vorticity vector ωi ¼ ϵijkAjk (ϵijk being the Levi-Civita
symbol). We use their square norms

Σ ¼ 2SijSij; Ω ¼ ωiωi; ð2Þ

the former being the dissipation rate without the viscosity,
i.e., Σ ¼ ϵ=ν, and Ω being the enstrophy. From statistical
homogeneity and the definition of τK , it follows hΩi ¼
hΣi ¼ 1=τ2K . It is well-known that the interaction of strain
and vorticity plays a direct role in generating extreme
gradients in the flow and hence the smallest scales [24,34].
Understanding the salient properties of this interaction
constitutes the first step of our analysis.
Figure 1 shows the structure of extreme events at the

highest Rλ (¼ 1300) via visualization of isosurfaces of
strain and vorticity. Figure 1(a) corresponds to a moderately
large threshold and illustrates the well-known picture of

intense gradients corresponding to vortical filaments,
surrounded by sheetlike regions of intense strain
[10,24,25,35]. In Fig. 1(b), a substantially larger threshold
is chosen, and remarkably vortical filaments still prevail.
Although Ω and Σ have the same mean, it is well-known

that Ω is more intermittent [10,25,36], likely due to the
disparate role of vortex stretching in amplifying vorticity
and simultaneously depleting strain [31,34]. This is
reflected in their probability density functions (PDFs),
shown in Fig. 2(a), which firmly establishes that this
difference is not a low-Rλ effect as previously believed
[21,37,38]. The local interrelationship between strain and
vorticity can be better understood by considering their
mutual conditional expectations, shown in Fig. 2(b) (which
also have been studied previously in various contexts
[10,21,30]). The main observation is that while large Σ
is accompanied by proportionately large Ω, i.e., hΩjΣi ∼ Σ,
the converse is not true. Instead, the strain in regions of
intense vorticity is considerably weaker, and empirically
described by the power law

hΣjΩiτ2K ∼ ðΩτ2KÞγ; 0 < γ < 1; ð3Þ

FIG. 1. 3D contour surfaces of Ωτ2K (cyan) and Στ2K (red) at
Rλ ¼ 1300. The contour thresholds are (a) 500, and (b) 4000. The
domain size in both cases is ð100 ηKÞ3.
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FIG. 2. (a) Probability density functions (PDFs) of Ωτ2K and
Στ2K (inset) for various Rλ. (b) Conditional expectations hΣjΩi
(solid lines) and hΩjΣi (dashed lines) for various Rλ. The black
dashed line corresponds to a slope of one. Inset shows γ as a
function of Rλ, for a power law hΣjΩi ∼ Ωγ applied in the region
Ωτ2K ≳ 1.
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where the exponent γ slowly increases with Rλ [see inset of
Fig. 2(b)]. Notably, existing intermittency models neither
predict this nor take it into account when characterizing the
smallest scales.
With the knowledge of vortical flow structures and the

asymmetry between the behavior of strain and vorticity
(reflected in the exponent γ), we now formulate the
framework to quantify the smallest scales in the flow.
From a physical standpoint, the smallest length scale in the
flow corresponds to the smallest dimension of vortical
structures, as obtained from a balance between viscosity
and some effective strain Se ≃ Σ1=2

e acting on the particular
structure [39]

η ¼ ðν2=ΣeÞ1=4; ð4Þ

which can be rewritten as

η=ηK ¼ ðΣeτ
2
KÞ−1=4: ð5Þ

The classical Kolmogorov result in Eq. (1) is obtained for
Σe corresponding to the mean field, i.e., Σe ¼ hϵi=ν ¼
1=τ2K. Instead, the observation in Fig. 2 suggests using the
conditional relation in Eq. (3), leading to

η=ηK ¼ ðΩτ2KÞ−γ=4: ð6Þ

Introducing the length scale ηext as the size associated with
vortex structures corresponding to Ωmax, which in turn
corresponds to the smallest timescale τext, i.e., Ωmax ∼ τ−2ext,
leads to

ηext=ηK ¼ ðτext=τKÞγ=2: ð7Þ

Keeping in mind the growth of PDF tails with Rλ (when
normalized by τK), we can write

ηext ¼ ηK × Rλ
−α; τext ¼ τK × Rλ

−β; ð8Þ

where α; β > 0 are to be determined. Substituting these in
Eq. (7) leads to

2α ¼ γβ; ð9Þ

giving first direct relation between α and β.
We now recall that velocity gradients in the flow

simply correspond to velocity increments across the small-
est length scale. Hence, the strongest gradient simply
corresponds to the largest velocity increment, say, δumax
over ηext:

1=τext ∼ δumax=ηext: ð10Þ

Based on earlier works [10,17,24] (see also [40]),

δumax ∼ u0; ð11Þ

where u0 is the rms of velocity, which upon substitution in
Eq. (10) gives

β ¼ αþ 1=2: ð12Þ

Here, we have used the standard estimate u0=uK ∼ Rλ
1=2,

where uK ¼ ηK=τK . Finally, solving Eqs. (9) and (12)
allows us to obtain α and β in terms of γ:

β ¼ 1

2 − γ
; α ¼ γ

2ð2 − γÞ : ð13Þ

To first validate the result for β, we return to the PDFs
shown in Fig. 2(a), with the expectation that rescaling them
with τext should collapse the tails. Figure 3(a) shows this
result, with β (and τext) defined based on γ obtained in
Fig. 2(b), demonstrating excellent agreement. It should be
noted that a similar collapse was also obtained in [10] at
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FIG. 3. (a) Rescaled PDFs of Ω and Σ, normalized by τ2ext
corresponding to smallest timescale, at various Rλ. The black
dashed line corresponds to stretched exponential fit. (b) Plot of
b1=c vs Rλ corresponding to stretched exponential fits to PDFs
of Ω and Σ. For clarity, we have rescaled the curves, so all data
points superpose at Rλ ¼ 1300. The dashed (cyan) line corre-
sponds to the prediction for β in Eq. (13), taking into account the
variation of γ shown in inset of Fig. 2(b) [40], whereas the dotted
line corresponds to the prediction β ¼ 1 in Eq. (19).
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lower Rλ and for a fixed value of β ¼ 0.775. However, the
current data at significantly higher Rλ negate a fixed value
of β. Hence, the Rλ dependence of β (arising from γ) is a
crucial ingredient of the current approach and imperative
for obtaining an accurate description. This expectation
and the quantitative variation of β are also consistent with
recent results of [11], which characterize the scaling of
extreme dissipation events based on underlying shear-layer
structures.
While the arguments leading to Eq. (13) use the physical

picture of intense vorticity tubes, the collapse in Fig. 3(a)
remarkably indicates that both extreme vorticity and strain
scale with τext, though these extrema arise from different
spatial locations. This suggests that the amplification of
vorticity and strain occurs simultaneously with the same
timescale, albeit nonlocally [41], inducing the asymmetry
in their local correlation as observed in Fig. 2(b). Thus,
the exponent γ < 1, which captures this asymmetry, also
captures the nonlocality of vorticity-strain interaction. In
fact, as demonstrated later, this is also the key reason for
our framework’s success over prior intermittency models.
The collapse in Fig. 3(a) can be additionally verified by

noting that the tails of PDFs of Σ and Ω (and velocity
gradients in general) are well fitted by stretched-exponen-
tial functions [9,10,21,42–44]:

fXðxÞ ≈ a expð−bxcÞ; ð14Þ

where x ¼ Ωτ2K or Στ2K. Applying a change of variable
xe ¼ xðτK=τextÞ2 will lead to the transformation b → b0 ¼
b × Rλ

2βc. A necessary condition to collapse the tails would
imply that b0 is independent of Rλ, leading to the expect-
ation that b1=c ∼ Rλ

−2β (for any given value of c).
Figure 3(b) shows the plot of b1=c as a function of Rλ, for

various c values (comprehensive details about the fitting
procedure, and the chosen range of c are discussed in the
Supplemental Material [40]). We compare the slope of the
data points for b1=c with the result for β in Eq. (13) by
using the γ obtained earlier from Fig. 2(b) (note γ varies
from 0.60 to 0.75 for Rλ ¼ 140 − 1300)—once again,
demonstrating excellent agreement. It is worth iterating
that the collapse obtained in Fig. 3(a) does not depend
on the curve fitting procedure. Nevertheless, this fitting
procedure independently reaffirms the robustness of our
result and rules out any ambiguity.
While the result for τext (and β) was readily verified using

the PDF tails, verifying ηext (and α) presents an inherent
difficulty. A simple approach would be to evaluate the PDF
of the coarse-grained gradient δur=r, where δur is the
velocity increment over some scale r, and successively
make r smaller until the PDF of δur=r collapses to the PDF
of velocity gradient for r ≤ ηext. However, DNS data only
provides discrete values of r (in integer multiples of the
grid spacingΔx), making it impractical to precisely identify
the exact r=ηext without invoking some interpolation or

approximate analysis. Instead, we devise a simple alter-
native by characterizing the deviations of δur=r from the
actual gradient. Note, the velocity increment can be
longitudinal or transverse, i.e., corresponding to velocity
component parallel or perpendicular (respectively) to the
separation vector, but it will be evident that this choice is
immaterial.
From the Taylor-series expansion of δur, it follows that

δur
r

¼ ∂u
∂x þ

∂2u
∂x2

r
2!

þ ∂3u
∂x3

r2

3!
þ � � � : ð15Þ

For r ≤ ηext, the rhs converges to ∂u=∂x, whereas for
r > ηext deviations are expected due to the higher-order
corrections. For the most extreme gradients, we can
nominally write ∂nu=∂xn ≃ cnu0=ηnext, where cn are inde-
pendent of Rλ. Together with u0 ∼ ηext=τext, this gives

δurτext
r

≃ c1 þ
c2
2!

�
r
ηext

�
þ c3

3!

�
r
ηext

�
2

þ � � � ; ð16Þ

leading to the expectation that the tails of PDFs of δurτext=r
can be collapsed at different Rλ by matching the r=ηext,
thus providing a simpler test with DNS data. We notice
that ηK=ηext at Rλ ¼ 140 is approximately 2 times that at
Rλ ¼ 1300. Figure 4 shows the rescaled PDF of δurτext=r,
for r=ηK ¼ 1, 2, 4, and 8 at Rλ ¼ 1300, and r=ηK ¼ 2, 4, 8,
and 16 at Rλ ¼ 140, showing a remarkably good collapse
of the tails, providing a strong confirmation of our
approach. Similarly, for Rλ ¼ 140 and Rλ ¼ 650, the ratio
of their ηK=ηext is approximately 1.5, and a similar collapse
is obtained (see [40]).
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FIG. 4. Rescaled PDFs of the (transverse) velocity increments,
δur, nondimensionalized by τext=r. Solid red lines are for
Rλ ¼ 1300, showing r=ηK ¼ 1, 2, 4, and 8, and dashed blue
lines are for Rλ ¼ 140, showing r=ηK ¼ 2, 4, 8, and 16,
corresponding to the ratio of ηK=ηext for these two Rλ. Curves
for increasing r=ηK shift monotonically from right to left.
Although not shown, the curves corresponding to the longitudinal
increments exhibit similar behavior.
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The framework developed in this work differs from
previous phenomenological models, which ignore impor-
tant features of the Navier-Stokes dynamics. In this regard,
the commonly used notion is that the viscous cutoff scale is
defined by the phenomenological criteria of local Reynolds
number being unity [7,17,19,20,33]:

δurr=ν ≃ 1: ð17Þ
This is essentially an ad hoc extension of the K41
phenomenology, since uKηK=ν ¼ 1. The velocity incre-
ment δur is assumed to be Hölder continuous, akin to
multifractality [7]:

δur=u0 ∼ ðr=LÞh; ð18Þ
where L is the large-eddy length and h is the local Hölder
exponent. It trivially follows that the smallest scales
correspond to the minimum Hölder exponent hmin. Since
δur ∼ u0 for the smallest scales, or equivalently hmin ¼ 0
[7,17,19], it can be shown that [40]

β ¼ 2α; β ¼ αþ 1

2
; ð19Þ

giving β ¼ 1 and α ¼ 1=2, in line with previous predictions
[17–20].
It can be readily seen that the result in Eq. (19) differs

from our results in Eqs. (9) and (12) only by the factor γ,
both being the same if γ ¼ 1, i.e., when strain and vorticity
are locally commensurate. While the numerical results
clearly demonstrate that γ < 1, the weak increase in γ with
Rλ [inset of Fig. 2(b)] is suggestive of a slow approach to
γ ¼ 1 when Rλ → ∞. However, a nominal extrapolation of
the data in Fig. 2(b) suggests that this limit will be reached
at extremely large Rλ, beyond what can be achieved
experimentally or numerically [40]. In fact, this is in line
with previous and recent results that independently reaffirm
the shortcomings of the multifractal model [11,24,27].
Since the result in Eq. (18) (for h ¼ 0, giving δur ∼ u0) is

consistent across all descriptions, the noted discrepancy
arises from the criterion in Eq. (17). For vortex tubes, the
smallest scale as set by Eq. (4) is qualitatively similar to the
criteria in Eq. (17). However, it does not provide any
constraint on the circulation of the vortex, Γ, implying that
the local Reynolds number defined as RΓ ¼ Γ=ν is not
necessarily unity. Instead, our results indicate RΓ ≃ R1−β

λ ,
in qualitative agreement with the results of [24]. Note,
for Rλ → ∞, the expectation γ, β → 1 implies that RΓ →
constant. Thus, the crucial misstep in prevailing intermit-
tency models appears to be its inability to distinguish
longitudinal and transverse components and use their local
correlation. In fact, previous and recent results have shown
that this shortcoming also extends to inertial range, where
longitudinal and transverse structure functions exhibit
different scaling exponents, contrary to the prediction from
the multifractal model [45–48].

In conclusion, we have developed a simple framework to
characterize the smallest scales of turbulence that uses the
underlying asymmetry between strain and vorticity dynam-
ics of Navier-Stokes equations. We have demonstrated
excellent agreement of DNS data with predictions, and
shown that our parameterization reduces to predictions
from existing intermittency models when the symmetry
between strain and vorticity is restored, albeit at extremely
large Rλ, which are unattainable on Earth. In this regard,
understanding the asymmetry between vorticity and strain
appears to be a crucial component to understanding
intermittency in turbulence for all practical situations of
interest, suggestive of a new avenue of investigation. It
would also be pertinent to extend the current framework to
turbulent mixing of scalars, where recent results have
suggested that the smallest scales in the scalar field also
deviate from classical predictions [49,50].
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