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We observe and study a special ground state of bosons with two spin states in an optical lattice: the spin-

Mott insulator, a state that consists of repulsively bound pairs that is insulating for both spin and charge

transport. Because of the pairing gap created by the interaction anisotropy, it can be prepared with low

entropy and can serve as a starting point for adiabatic state preparation. We find that the stability of the spin-

Mott state depends on the pairing energy, and observe two qualitatively different decay regimes, one of

which exhibits protection by the gap.
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Mott insulator states of ultracold atoms in optical lattices
have played a central role in ultracold atoms research [1,2].
Because they are a well-isolated low-entropy state pro-
tected by an energy gap, such states have been considered
as qubits [3], as a starting point for adiabatic state
preparation [4,5], and for studies of many-body physics
[6], in particular quantum magnetism [7]. They were used
in seminal work on Heisenberg spin Hamiltonians [8—10]
and as a platform to study Rydberg crystals [11] and
magnetic polarons [12].

When the spin degree of freedom is added to a Mott
insulator, it opens up low-lying excitations, and much lower
temperatures are needed to reach the ground state. For
occupations of N = 1, the energy scale is set by super-
exchange, the process by which two spins can be swapped
via a virtual intermediate state. This energy scale is often
smaller than 1 nK (e.g., for rubidium). As a result,
magnetically ordered ground states were only observed
using fermionic lithium (which, due to its low mass, has
comparatively large tunneling and exchange energies) [13]
or using special ramping schemes [14,15].

Because preparing spinful ground states is challenging,
many experiments probed spin dynamics through que-
nches, where an initial spin-polarized state is suddenly
rotated into a spin superposition. This has enabled study of
transport of bound states [16] and spin waves in isotropic
[17] and anisotropic [18,19] S = 1/2 Heisenberg models.
Recently, we have also studied the relaxation of rotated spin
states in § = 1 Heisenberg models [20]. Parallel efforts
have succeeded in preparing bipartite product states
through carefully shaped ramps [21,22].

Here, we show that the situation is drastically different
for a spinful Mott insulator with two particles per site. If the
on-site interaction energy U,p between opposite spins is
considerably lower than that between identical spins (U),
there is an effective pairing energy D = U — U,p favoring
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the formation of repulsively bound pairs of opposing spins.
The ground state of the N = 2 Mott insulator, then, is a
Mott insulator of spin-paired doublons with an excitation
gap D. This implies that a spinful N = 2 Mott insulator has
aregion in its phase diagram where the excitation gap is of
scale D or U, which typically corresponds to 50 nK for
rubidium, and is thus much larger than the superexchange
scale (see Fig. 1). As a function of D, there is a phase
transition in the spin domain between a spin superfluid
(also known as a counterflow superfluid) and a spin
insulator. This is in full analogy with the superfluid-to-
Mott insulator transition in the charge domain [23]. The
spin-Mott state can serve as an ideal starting point for
adiabatic preparation of states with different spin ordering
[4]. It is also analogous to the band insulator of fermions for
N = 2 occupation [5], since this state is (in the limit of
large pairing energy) a product state of spin-paired dou-
blons on each site.

In this Letter, we demonstrate techniques to prepare and
probe the spin-Mott state and study its stability. Our system
comprises two different hyperfine states of 3’Rb in a (spin-
dependent) optical lattice, which are described by the
two-component Bose-Hubbard Hamiltonian [24]. In one
dimension, and assuming equal tunneling for both compo-
nents, this is given by

H = —IZ(a;‘I—am +blbiyy +He)

Y o = 1)+ Uyt (1)

i ke{ab)

Here, nf is the number operator acting on component k on
site i, ¢ is the nearest-neighbor tunneling parameter; U and
U,p are the intra- and interspecies on-site interactions,
respectively, where we have assumed U = Uy, pp.
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FIG. 1. Mean-field phase diagram of the (two-component) Mott insulator showing the number of atoms per site for a chemical

potential y and tunneling rate ¢ (which, in the mean-field model, is enhanced by the coordination number 7). The leftmost panel contains
the phase diagram of the single-component system [23]. The other panels, from left to right, show the two-component phase diagram for
D/U =0, 0.5, and 1.0. As D increases, the lobes with an uneven number of particles shrink until they vanish because the absence of
interactions leads to the formation of two independent Mott insulators. The lobe color indicates the excitation gap. In the single-
component system, the first-excited state is a particle-hole pair, which costs an energy U to create. In the two-component system it is a
spin excitation with an energy on the order of D. The numbers in the lobes indicate (n) = (n®) + (n®).

Restricting ourselves to a deep lattice with two particles
per site, this model maps onto an § = 1 Hamiltonian [4,24],
with the spin-Mott insulator as the ground state for
U,p < U. This is a product state with a single A and B
atom per site, which in the spin mapping corresponds
to |S, = 0).

Correlations become important when the pairing and
superexchange energy become comparable: D= J =
—442 /U ap [20,25,26]; in this regime second-order tunnel-
ing induces quantum fluctuations of the spin around the
spin-Mott insulator. Here, the ground state is an xy
ferromagnet that contains correlations between sites [4];
this bears resemblance to the superfluid phase of the single-
component system, where the excitation gap vanishes, and
where number fluctuations drive correlations between
sites [23].

Experimental setup.—Our experiment starts with a Bose-
Einstein condensate (BEC) of approximately 10* atoms. A
mixture of the hyperfine states A = |F = 1,m; = —1) and
B =|F =1,mp = 1) is created using microwave sweeps,
after which the cloud is loaded into a three-dimensional
lattice with depths of at least 25 Ej, to be deep in the Mott-
insulating regime. Here Ex = h*/2mA? is the recoil energy
of a lattice photon with wavelength A for an atom of mass
m. The interaction between different hyperfine states of
rubidium is nearly isotropic [27,28], and hence for any pair
D =~ 0. The interaction scale U can be adjusted, however,
by separating the Wannier functions of A and B atoms in
the lattice. This can be done using spin-dependent poten-
tials based on the vector AC Stark shift, which separates
spin states with different magnetic moments. We create
such a lattice using a 810-nm wavelength laser and a
tunable polarization gradient [29]. The two transverse
lattices are created using 1064-nm light.

Preparing the spin-Mott insulator.—For D =~ U, the
absence of interspecies interactions leads to the formation
of two independent Mott insulators (see Fig. 1). Here, the

system exhibits a large excitation gap that we have
measured through lattice modulation [29]. This is similar
to the single-component case that has a gap of U; hence, it
is straightforward to prepare the ground state of Eq. (1). We
do so by creating an equal mixture of the two components,
followed by a ramp of the lattice while maintaining D =~ U.
If the atom number is adjusted to fall within the N = 2 Mott
insulator plateau (but such that it avoids the N = 3 sector),
we prepare a highly ordered spin state with the same wave
function on every site.

The pairing fraction is measured using the detection
protocol as described in Ref. [20]; in short, we quench to
D = 0 (see insets in Fig. 3), and take three measurements
using absorption imaging: one of the total atom number,
one of the atom number after removing all pairs using a
Feshbach resonance, and one after selectively removing
just the AB pairs using a Feshbach resonance [36]. The
removal procedure has been measured to saturate the losses
over the time during which it is applied, from which we
conclude it to be efficient. The pairing fraction is given by
the ratio of differences of these measurements, which
makes it susceptible to shot-to-shot number fluctuations.
To mitigate this, all data presented throughout is obtained
as the average of three measurements in each of the three
channels, with the error bar reflecting the standard error of
the mean. Our measurement protocol directly determines
the spin temperature of the system. It is not affected by
holes and singly occupied sites (it is affected by triplons,
which we minimize by our state preparation protocol).

To highlight the correspondence between the spin-Mott
insulator and its single-component cousin, we have mea-
sured the characteristic superfluid-to-Mott insulator phase
transition [37]. Both components were imaged individually
using Stern-Gerlach separation during time of flight; see
Fig. 2. From these images, we can determine the con-
densate fractions in each state. Using our pair measurement
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FIG. 2. The superfluid-to-Mott insulator phase transition for a
system with two spin states. (a) Starting with a spinor BEC in an
equal superposition state of |1,—1) and |1, 1), we ramp up the
lattice into the Mott-insulating regime while D = U. (b) In the
Mott plateau, we observe a dip in condensate fraction (CF), while
(c) the pairing fraction approaches unity.

protocol, we verify that the spin-Mott insulator (realized for
deep lattices) has a pairing fraction close to unity.

The gap of the spin-Mott state shrinks as D is decreased.
We have explored how small D can become before we
observe a degradation of the spin-Mott state due to finite
temperature or nonadiabatic loading. Figure 3 shows the
initial pairing fraction as a function of D, after ramping into
a deep lattice (23 ER). We find that it is possible to attain
high pairing fractions of over 0.9 for a wide range of initial
values of D.

According to matrix product-state calculations, the spin-
Mott state is the ground state for D > 0.05U at a lattice
depth of 8 Ej [4]. The imperfect pairing fraction observed
for D < 0.2U in a 23 Ejy, lattice can be explained by finite
spin temperature. We can deduce the temperature from a
model where tunneling is assumed to be negligible, and
hence the Hamiltonian is diagonal on each site in the basis
{|AA), |AB), |BB)}. Generalizing the treatment of a single-
component Mott insulator [38], we obtain the pairing
fraction (i.e., the population in |AB)), for a thermal state
lwr) at temperature T as

[{ABlyrr)? = [1+2exp (=D/kpT)]™". (2)

Fitting this expression to our data, we obtain
kgT/U = 0.06 & 0.01, which corresponds to 4+ 1 nK
for U/2x ~ 1300 Hz. This is comparable to temperatures
reported for single-component Mott insulators [39,40]. We
expect that the charge temperature (set by defects) and the
spin temperature are in equilibrium during the lattice ramp

1.0 1
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FIG. 3. Preparation of the spin-Mott state for various pairing
energies D. The decrease of the spin pairing fraction for small D
is explained by a finite temperature. Lines are based on the model
of Eq. (2) at various temperatures. Insets: lattice configuration at
various values of D/U.

while tunneling is fast. After loading, the charge temper-
ature increases by diffusion of defects from outer parts of
the cloud, while the spin temperature is protected as long as
D >t (see Fig. 4). The latter is lower than the temperature
of the initial BEC due to adiabatic cooling during the lattice
ramp [4]. Figures 2 and 3 represent the main result of this
Letter: the successful preparation of the ground state of a
spinful N = 2 bosonic Mott insulator, which has not been
accomplished before.

Relaxation behavior.—The decay of the spin-Mott state
determines how it can be used as a low-entropy starting
point for further experiments. To investigate this, we
measure the lifetime as a function of lattice parameters.
After the preparation, we ramp D during 100 ms while
staying in a deep (25 Ejy) lattice—this can be considered a
quench since the tunneling rate is on the order of 1 Hz. We
then lower the lattice to 16 E and measure how the pairing
fraction decays.

We can distinguish two qualitatively different relaxation
regimes as a function of D; see Fig. 4(a). When quenching
D close to 0, the system quickly approaches the thermal
state: an incoherent equal mixture of |[AA), |AB), and |BB)
on every lattice site, which leads to a pairing fraction of
1/3. For larger values of D the behavior is qualitatively
different: not only does the relaxation take longer, the
pairing fraction also does not decay to 1/3 over exper-
imentally accessible timescales; rather it goes to ~1/2. This
is what one would expect if thermalization were con-
strained to the symmetric subspace; i.e., the states |AB) and

(|AA) 4 |BB))/+/2 with each receiving half the population.
If all couplings preserve the initial symmetry, the system is
constrained to this subspace.

The two different regimes also show up in the relaxation
behavior as a function of lattice depth. In Fig. 4(b) we
compare the system when held in the spin-Mott phase and
after quenching to D = 0. For small values of D, the decay
rate scales linearly with the tunneling rate, while in the
spin-Mott state the decay rate is lattice-depth independent.
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FIG. 4. Lifetime of the spin-Mott insulator. (a) The relaxation
shows qualitatively different behavior as a function of D: the pair
fraction either approaches the infinite temperature limit (1/3, if D
is small) or not (1/2, if D is large). Different colors represent
different values of D/U. Inset: fitted lifetimes 1/I" and the
equilibrium values of the pair fraction. (b),(c) Lifetime at various
lattice depths, represented by different colors, where D is fixed to
be either within the spin-Mott insulator [D = 0.3U, (b)] or at the
isotropic point where D = 0 (c). Inset: fitted lifetime for both
datasets scaled by the tunneling time 27 /¢. For D = 0 we observe
that the decay scales with tunneling, whereas for D = 0.3U it is
independent of 7. A single fit of all the lifetimes was done using
Eq. (3), which is shown by the black lines.

This behavior is captured by modeling the total decay
rate as the sum of a background contribution and a term
that depends linearly on tunneling but which is suppressed
by D:

[(t,D) =T+ (t/2x)/[1 + ciexp(D/cy)].  (3)

Here, c¢; and ¢, are fit parameters, and the form is such that
['(t,D) — Ty if D is large, as it is in the spin-Mott insulator.
This expression gives us a quantitative description of the
lifetimes measured in Fig. 4 (see Ref. [29]).

We conjecture that a combination of factors causes this.
For D =~ 0 we enter the regime where the temperature of the
N = 2 plateau is sufficiently large to drive deviations from
perfect pairing already observed during loading (see
Fig. 3). First-order tunneling with imperfections in the
Mott insulator will allow entropy transport from the outer
regions of the system inward, which will rapidly increase

the spin temperature. This is a plausible explanation for the
scaling with tunneling rate.

At higher values of D the excitation gap protects against
relaxation. It is seen through longer lifetimes that are
lattice-depth independent. This makes it unlikely that the
decay is caused solely by either tunneling or light scatter-
ing—related mechanisms. This is confirmed by a measure-
ment of a spin-polarized Mott insulator that does show a
scaling of lifetime with lattice intensity. Nevertheless, the
interplay between different effects in our experiment is
complicated; increasing the lattice depth increases both
light scattering and confinement. With our current setup it
is hard to disentangle such mechanisms. The cause of the
slow spin relaxation could be mobile atoms in excited
bands created by technical noise of the lattice beams, or
grazing collisions with background gas atoms.

Discussion and conclusions.—While the spin-Mott insu-
lator is a product state, it can be used as a starting point for
adiabatically preparing correlated spin states such as the xy
ferromagnet [4,24]. Similar schemes have been proposed
for fermions, where the (gapped) band insulator can be
used to adiabatically prepare an antiferromagnet [5]. In that
case the initial product state is stabilized by the band gap,
whereas in our case it is stabilized by the pairing energy D.
This difference in energy scales also makes our system
suitable for studying spin-charge separation [41].

Adiabatic state preparation requires that the gaps
between many-body states are traversed sufficiently slowly;
in a Landau-Zener model of avoided crossings, the maxi-
mum rate is set by the coupling between states [42—44]. In a
deep lattice this scales with second-order tunneling as o
472 /U [4,20,25]. Furthermore, coupling between different
many-body states scales inversely with the number of sites
in a chain. For our present system the superexchange scale
is maximally 10 Hz at a longitudinal lattice depth of 12 Ej.
This is comparable to some of the decay rates reported in
Fig. 4. Therefore, attempts to adiabatically sweep the spin-
Mott state into correlated spin states were not successful.

Other atomic species are favorable; cesium, e.g., has a
larger fine-structure splitting that makes it possible to create
a spin-dependent potential at larger detunings with less
light scattering. The lanthanides are also attractive because
they feature spin-orbit coupling in the ground state, and
hence have a vector AC Stark shift for any lattice detuning.

The future addition of a quantum-gas microscope to our
setup [45] will mitigate some of these issues. With single-
site resolution, experiments can be performed on short
chains with definite length that are fully decoupled from
surrounding thermal reservoirs.

In conclusion, we have prepared and characterized the
spin-Mott state that is the ground state of the two-
component Bose-Hubbard model in deep lattices, which
can be mapped onto an § = 1 Heisenberg Hamiltonian.
This state features a large pairing gap, and is a promising
platform for adiabatic preparation of magnetic phases and
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the study of other many-body phenomena. Additionally,
since the spin-Mott state is a product state of repulsively
bound pairs it offers a way to study pair superfluidity
[46,47] and quantum droplets [48]. Analogous to Ref. [49],
one could do this by creating a dilute gas of repulsively
bound dimers after reducing the harmonic confinement and
emptying out the singly occupied sites.
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