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Traversable Wormholes in General Relativity
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Blazquez-Salcedo et al. [Phys. Rev. Lett. 126, 101102 (2021)] obtained asymptotically flat traversable
wormbhole solutions in the Einstein-Dirac-Maxwell theory without using phantom matter. The normalizable
numerical solutions found therein require a peculiar behavior at the throat: the mirror symmetry relatively
the throat leads to the nonsmoothness of gravitational and matter fields. In particular, one must postulate
changing of the sign of the fermionic charge density at the throat, requiring coexistence of particle and
antiparticles without annihilation and posing a membrane of matter at the throat with specific properties.
Apparently this kind of configuration could not exist in nature. We show that there are wormhole solutions,
which are asymmetric relative the throat and endowed by smooth gravitational and matter fields, thereby
being free from all the above problems. This indicates that such wormhole configurations could also be

supported in a realistic scenario.
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Introduction.—Wormholes are hypothetical objects con-
necting disparate points of spacetime or even different
universes [1]. Wormholes have never been observed and
even their existence and formation scenarios are highly
disputable questions. Nevertheless, the chance to have a
traversable wormhole or construct it in a laboratory in the
distant future pays off the efforts of theoreticians, attracting
a lot of attention recent years. Existence of humanly
traversable wormholes requires gravitational repulsion,
which usually could be supported by matter with negative
kinetic terms, restraining the throat from shrinking.
Examples of wormholes without adding such phantom
matter come at the price of modifications of the gravita-
tional theory [2-10]. Frequently, wormholes in such
theories are unstable against linear perturbations [11,12].
Miniature self-supported wormholes could possibly exist
due to vacuum polarization in their vicinity [13].
Cylindrical wormhole solutions found in [14] are non-
compact and glued with the asymptotically flat spacetime.

Therefore, the crucial question is whether asymptotically
flat traversable wormholes could exist as compact objects
within the Einstein gravity without adding phantom matter.
In this case, normal matter fields must anyway violate the
null energy conditions [15,16]. Until the recent work [17],
no solutions of Einstein equations with usual matter fields
were known to provide existence of such wormholes.
Wormhole solutions in Einstein gravity with added
Maxwell and two Dirac fields with the usual coupling
between them were found in [17]. Two kinds of wormhole
solutions were represented there: The first one is an
analytical solution, describing symmetric relative the throat
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wormhole supported by massless and neutral fermions,
which, themselves, are nonsymmetric relative the throat.
However, the fermions do not decay at infinity and are,
therefore, non-normalizable. (Note that traversable worm-
holes in the four-dimensional anti—de Sitter spacetime can
be supported by massless fermions, which are localized
near the throat [18].) The other, normalizable, solution was
obtained numerically and corresponds to the symmetric
configuration of both the metric tensor and matter fields.
The solution was obtained by integrating the field equations
between the throat and infinity and requiring the mirror
symmetry, what led to other “exotic” properties (see [19]
for details): (1) The throat becomes a special point where a
massive shell of some matter must be posed. (2) The
infinitely thin shell separates the fermion particles and
antiparticles which, therefore, must meet at the throat
without annihilation. (3) The metric tensor and matter
fields are not continuously differentiable at the throat
(although the metric and Riemann tensors are continuous).
Thus, the consistent quantum description of such classical
configuration is evidently impossible.

In this context, we are interested to know whether
traversable wormholes can exist in a more realistic sit-
uation, i.e., without the above exotic factors, such as the
mass shell on the throat or coexistence of particles and
antiparticles without annihilation. Here we show that there
are nonsymmetric, relative the throat, continuously differ-
entiable solutions that describe asymptotically flat, travers-
able wormbholes supported by normalizable and smooth
matter fields. Thus, our solutions are free from all of the
above disadvantages of [17].

© 2022 American Physical Society
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Basic equations.—We consider the action [17]

1 1
S:E/\/—g<ZR+£M+£1+£2>d4X, (1)

where the Lagrangians for the Maxwell and two Dirac
fields with mass y are defined as follows:
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A spherically symmetric configuration is given by the
following line element and four-potential:
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We employ the following ansatz for the spinors (cf. [20]):
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with k = =1 and
¢(x) = e"/*F(x) — e7"/*G(x), (5d)

where F(x) and G(x) are real. The nonzero component of
the current is

)’ =4p(x)]P/N(x) = 4[F(x)* + G(x)]*/N(x). (6)

Varying the action (1) and substituting (5) in the field
equations, we obtain a set of the ordinary differential
equations for functions N(x), B(x), V(x), G(x), and
F(x) (see Supplemental Material for details [21]).

Wormholes with Z, symmetry.—Junction conditions at
the throat lead to the choice of the opposite signs for x on
different sides of the throat and changing the sign of one of

the fermion functions, G(x) or F(x), at the throat, which
corresponds to the transformation ¢, — xig: [17].
Therefore, it is convenient to associate the two sides of
space relative the throat with the opposite signs of k = +1.

The analytic solution given in [17] suggests the appro-
priate choice of the compact coordinate, x = k\/1 — ry/r,
so that the two signs of x describe the wormhole on both
sides of the throat located at x = 0 (r = r). Without loss of
generality, we take ry = 1 and measure all the dimensional
quantities in units of the wormhole radius.

In order to obtain a symmetric wormhole, we solve the
field equations for x > 0 (x = 1) and employ the above
junction condition to produce a symmetric solution. One
can check that the equations are automatically satisfied for
x<0((k=-1)if

N_(x) = =Ny(=x).  F_(x) = —F.(=x).
B_(x) =—B,(=x).  G_(x) =G, (),
Vo) = -V, o =-o.. (7)

Note that the mirror symmetry requires changing of the
sign of frequency @ and lapse function N(x) at the throat.
The latter implies that the charge density (6) also changes
its sign; i.e., particles and antiparticles meet at the throat.
Since the Maxwell potential is an odd function of x, the
electric strength V’(x) is even, having the extreme value at
the throat. Therefore, we require that

V'(0) = 0. 8)

With the additional condition (8), for the fixed field charge
g and mass u > 0, all the series coefficients for the
functions N(x), B(x), V(x), F(x), and G(x) can be
calculated in terms of the following four parameters:

n;=N(0),  b;=B(0),
fi=FO)r,  9:=G0)yro. ©)

We use the series expansions to calculate values of the
functions near the throat and use them as initial values for
numerical integration. In order to solve the system of six
first-order differential equations, it is sufficient to use the
standard Mathematica Livermore solver with the quad-
ruple-precision floating-point arithmetics. We have
checked that, within the numerical tolerance of 107°, the
explicit Runge-Kutta method with increased floating-point
precision yields the same results, including the asymptotic
behavior of the functions in a vicinity of the singular points
x = +1. Therefore, we are convinced that all six decimal
cases in the presented numerical data are accurate.

Considering fixed n;, b;, and f;, and varying g;, we find
that the fermion fields F(x) and G(x) diverge as
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)lcl_r)I}F(x) = +o0, }Cl_r)rllG(x) =F oo,

changing the sign at certain values of g;. Thus, one can use
the shooting method to find the value g;, such that F(x) and
G(x) vanish as x — 1. The convergent solution is such that
B(1) =1 and N(1) = o, so that the asymptotic observer
time is 7 = ot. The values of the asymptotic mass M,
charge Q, and post-Newtonian parameter y can be read off
from the asymptotic behavior of the functions

N+@):U<1—%%(l—@—k00—xy>,

o
B, (x) :1—y2::)4(1—x)—|—(’)(1—x)2,
V' (x) :6<%+O(1 —x)). (10)

It follows that variation of the parameter n; scales o, and we
fix n; in such a way that 6 = 1 (¢ = 7). Following [17], we
choose f; = 0. Then b; parametrizes a family of worm-
holes with Q > M, approaching the extremally charged
Reissner-Nordstrom black hole in the limit »; — 0. Larger
b; corresponds to smaller values of Q/rq, M/ry, and M/ Q.
We notice that this family of wormholes differs from the
one reported in [17], where the condition y =1 was
imposed instead of (8). The condition (8) is more relevant,
since the Maxwell equation has no discontinuity at the
throat because of changing the sign of V”(0).

We conclude that the junction conditions for such sym-
metric wormholes lead to nonsmooth geometries and con-
figuration of matter fields. Although the metric tensor and
matter fields are continuous, their higher derivatives have
discontinuity at the throat. The geometries considered in [17]
have additional discontinuity of V”(0). Nevertheless, the
Riemann tensor is continuous in both cases.

Smooth asymmetric wormholes.—In order to avoid the
above discontinuities, instead of the matching (7) at the
throat, we substitute

F(x) = F(x) = «F(x), B(x) —» B(x) =«B(x) (11)
in the Einstein-Dirac-Maxwell equations and search for a
solution in the complete region —1 < x < 1. [Equivalently,
we can substitute G(x) — G(x) = kG(x).] The equations
for the tilted functions do not depend on «. Therefore, we
fix x = 1 in a uniform way for the solution in the whole
space —1 < x < 1. [The physically equivalent solution for
k = —1 can be obtained by changing the sign of the
functions F(x) and B(x) and mirroring the configuration
by replacing x — —x.] The obtained solutions for N(x),
B(x), V(x), F(x), and G(x) are smooth functions every-
where, so that the densities of the electromagnetic and
Dirac fields do not have discontinuities, and the resulting
configuration does not require posing any shell of matter at

the throat. The function B(x) changes its sign at the throat
(x = 0), where it crosses the x axis. The latter condition
follows from the continuity of the radial vielbein [23].
Since we do not have Z, symmetry with respect to the
throat, we need to impose two asymptotic conditions
independently. For fixed values of n; and b; we find that,
depending on the choice of f; and g;, F(x) and G(x) can have

the following asymptotic behavior: (1) lim,_, ;G (x) = +o0,
lim,, F(x) =F o0 (red); (2) lim,_,;G(x) = —oo,
lim,_, F(x) = £o0 (blue); (3) lim,_ . ;G(x) = too,

lim,_ ., F(x) = —oo (magenta); (4) lim,_,.,G(x) =F oo,
lim,_, F(x) = 400 (green). When F(x) and G(x) change
the sign there are exponentially decaying solutions, which we
find by shooting f; and g;. The resulting metric is asymp-
totically flat on both sides of the throat,

M.

M”:%O— U$ﬂ+ou¢@ﬁ,

o
B(x) = j:(l —yizi/[—oi(l Fx)+0(1 :|:x)2>,
V'(x) :ojE(ierOiJrO(] :Fx)>. (12)

Note that, due to asymmetry, o, # o_, two stationary
asymptotic observers on the opposite sides of the worm-
hole’s throat have relativistic time dilation (redshift). By
scaling n; we can fix the coordinate time according to one
of the observers, so that either 6, =1 or o_=1. In
addition, unless ¢=0, we have M, #M_ and
Q. # O_. However, for all the solutions we have obtained,
74 =y_ ~ 1, at least within the numerical accuracy.

Since the electric potential V(x) is now a smooth
function everywhere, requirement V”(0) =0 (8) seems
not relevant for this case. Although we have obtained the
wormbholes, which have both smooth asymmetric continu-
ation and a continuous symmetric one, the most physically
relevant condition on the throat is, apparently (cf. [16]),

N'(0) =0, (13)

which leads to no gravitational force experienced by a
stationary observer at the throat (x = 0). The corresponding
time delation is given by 6, = N(0) = n,.

Since the field equations are invariant under changing
sign of the fermionic functions G(x) - —G(x) and
F(x) » —F(x), we can study only ¢g; > 0 without loss
of generality. For a given b; there are various possible
solutions, corresponding to different values f; and g;. We
compare two such solutions in Fig. 1. The largest absolute
values of g; and f; (producing asymptotically flat solutions)
with opposite signs [solution (1) in Fig. 1] correspond to
the fermion configuration with G(x) # 0 and F(x) # 0.
The second largest values of g; and f; lead to the fermion
configuration, for which both G(x) and F(x) cross zero
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FIG. 1. Comparison of two solutions (gry = 0.03, urq = 0.2)

with the same metric conditions at the throat (b; = 0.1) for
N'(0) = 0 and different fermionic configurations: (1) g; ~ 0.0109
(green) and f; ~ —0.0138 (blue); (2) g; ~ 0.0084 (magenta) and
fi = 0.0058 (red). Even though the metric functions and asymp-
totic parameters are close for both configurations, the electric and
fermionic fields differ significantly near the throat.

once near the throat. The closer the solution to the origin,
the more zeroth the fermionic functions possess and,
consequently, the integration and shooting should be
performed with higher accuracy.

For fixed fermion mass u and charge g we obtain
different wormhole solutions by varying b;. In the limit
b; — 0 we approach the extreme Reissner-Nordstrom black
hole. The asymptotic charge of the wormholes is always
larger than the asymptotic mass for all the obtained
solutions: Q, > M, and Q_ > M_. Unfortunately, con-
siderable increasing of b; makes integration less stable and
requires further increasing of precision for the whole
procedure.

We also obtained the wormhole solutions supported by
uncharged fermions (gro =0, uro=0.2). Since the
Compton wavelength for the neutrinos can be of the order
of millimeters [24], such solutions include traversable

N®)/o V'(x)/os

S0 05 ‘ 05 0 * 0 0 ‘ 05 10
FIG. 2. Comparison of solutions of the same fermion mass
(uro =02) for b, =003 ¢g=0, g ~0.003346, f,~
—0.004 082 (black, top); gro=0.03, g; ~0.003286, f;=~
—0.004 131 (blue); gry = 0.1, g, ~0.003 145, f; ~ —0.004 247
(red, bottom). While G(x), F(x), and B(x) are very close, the
lapse function N(x) and the electric field V’(x) differ signifi-
cantly on one of the asymptotics.

wormholes of the millimeter throat size. We have found
that the asymptotic mass and charge are the same for both
sides of the throat. However, the geometry is asymmetric
and there is a small redshift between the asymptotic
observers o_/o, = 0.99993. We compare these solutions
in Fig. 2. As the wormhole geometry under consideration is
quite different from that of the Schwarzschild black hole,
electromagnetic and gravitational radiation in the vicinity
of such wormholes could be potentially observable and
distinctive from those for the Schwarzschild case. The first
step in the direction has been made in [25], where the
shadows, quasinormal ringing, and echoes of the worm-
holes were considered. However, more realistic models
must also include wormholes’ rotation.

Conclusions.—In [17] the first classical configuration
supporting asymptotically flat traversable and symmetric
relative the throat wormholes in the Einstein theory has
been found in the presence of Maxwell and two Dirac fields
with usual (nonexotic) coupling. Nevertheless, those
classical wormhole configurations have a number of
unfeasible physical properties of matter at the wormhole
throat, such as coexistence of particles and antiparticles
without annihilation, nonsmoothness of matter fields, etc.
Here we found solutions describing asymmetric asymp-
totically flat traversable wormholes supported by smooth
metric and matter fields, which, therefore, are free of all the
above problems. This gives us the hope that such kind of
wormholes could exist in nature.
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