
No Evidence of Kinetic Screening in Simulations of Merging Binary Neutron Stars beyond
General Relativity

Miguel Bezares ,1,2 Ricard Aguilera-Miret ,3,4 Lotte ter Haar ,1,2 Marco Crisostomi ,1,2

Carlos Palenzuela ,3,4 and Enrico Barausse 1,2

1SISSA, Via Bonomea 265, 34136 Trieste, Italy and INFN Sezione di Trieste, 34136 Trieste, Italy
2IFPU—Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy

3Departament de Física, Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya,
Palma de Mallorca, Baleares E-07122, Spain

4Institut Aplicacions Computationals (IAC3), Universitat de les Illes Balears, Palma de Mallorca, Baleares E-07122, Spain

(Received 13 July 2021; accepted 19 January 2022; published 1 March 2022)

We have conducted fully relativistic simulations in a class of scalar-tensor theories with derivative self-
interactions and screening of local scales. By using high-resolution shock-capturing methods and a
nonvanishing shift vector, we have managed to avoid issues plaguing similar attempts in the past. We have
first confirmed recent results by ourselves in spherical symmetry, obtained with an approximate approach
and pointing at a partial breakdown of the screening in black-hole collapse. Then, we considered the late
inspiral and merger of binary neutron stars. We found that screening tends to suppress the (subdominant)
dipole scalar emission, but not the (dominant) quadrupole scalar mode. Our results point at quadrupole
scalar signals as large as (or even larger than) in Fierz-Jordan-Brans-Dicke theories with the same
conformal coupling, for strong-coupling scales in the MeV range that we can simulate.
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The investigation of gravitational theories beyondGeneral
Relativity (GR) has recently intensified, boosted by the
detection of gravitational waves (GWs) by LIGO and
Virgo [1–4], which allows for testing gravity in the hitherto
unexplored strong-gravity and highly relativistic regime.
Natural questions preliminary to these tests, however, are the
following: Do we really need to modify GR? What are the
open problems that GR cannot address andwhich wewish to
(at least partially) solvewith a different theory?Leaving aside
quantum gravity completions of GR, whose modifications
only become important at the Planck scale, GR cannot
explain the late-time accelerated expansion of the
Universe, unless one introduces a cosmological constant
(with its associated problems) or a dark energy component.
Therefore, an alternative gravity theory should provide
∼Oð1Þ effects on cosmological scales to improve upon GR.
However, ∼Oð1Þ effects on large (cosmological) scales

typically imply also ∼Oð1Þ deviations from GR on local
(e.g., solar-system [5] and binary-pulsar [6–8]) scales,
where GR is tested to within ≲Oð10−5Þ. To comply with
these stringent constraints, an obvious possibility is that the
additional gravitational polarizations (besides the tensor
modes of GR) have sufficiently weak self-couplings and
coupling with other fields, including matter. This is the case
of, e.g., Fierz-Jordan-Brans-Dicke (FJBD) theory [9–11].
In this way, however, their cosmological effects are lost,
and the theory cannot provide an effective dark energy
phenomenology. Less trivially, the nontensor gravitons
may self-interact (via derivative operators) so strongly near

matter sources that the “fifth” forces they mediate are
locally suppressed. This is the idea behind kinetic (or
k-mouflage) [12] and Vainshtein [13] screening.
Although screening mechanisms have been widely

advocated to reconcile modifications of GR on cosmologi-
cal scales with local tests (see, e.g., [14,15] for reviews),
their validity has never been proven beyond certain
simplified approximations (single body [12], weak gravity
[16,17], quasistatic configurations [18–20], spherical sym-
metry [21]), let alone in realistic compact-binary coales-
cences. Here, we will provide the first numerical-relativity
simulations of compact binaries in theories with kinetic
screening, and finally address the long-standing question of
whether screening mechanisms render GW generation
indistinguishable from GR.
Theories with kinetic screening, i.e., k-essence theories,

are the most compelling modified-gravity candidate for
dark energy after GW170817 [22,23] and other constraints
related to GW propagation [24–26]. In the Einstein frame
[27], the action of this scalar-tensor theory is [28,29]

S ¼
Z

d4x
ffiffiffiffiffiffi
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where X̃ ≡ g̃μν∂μϕ∂νϕ, Ψm are the matter fields,

Φ¼expð ffiffiffi
2

p
αϕ=MPlÞ, being MPl ¼ ð8πGÞ−1=2 the Planck

mass, and we set ℏ ¼ c ¼ 1. For KðX̃Þ, we only consider
the lowest-order terms
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γ

8Λ8
X̃3 þ…; ð2Þ

where Λ is the strong-coupling scale of the effective field
theory. For the scalar to be responsible for dark energy, one
needs ΛDE ∼ ðH0MPlÞ1=2 ∼ 2 × 10−3 eV, where H0 is the
present Hubble rate. The conformal coupling α and the
coefficients β and γ appearing in Eq. (2) are dimensionless
and ∼Oð1Þ.
Performing neutron-star (NS) numerical-relativity simu-

lations in k-essence is complicated by the strong-coupling
nature of the scalar self-interactions [30]. Although the
Cauchy problem is locally well-posed, the evolution equa-
tions may change character from hyperbolic to parabolic and
then elliptic at finite time [35,36]. This behavior can be
avoided by imposing “stability” conditions on the coeffi-
cients β; γ;… of Eq. (2) [36], just like other conditions
(e.g., no ghosts, tachyons, or gradient instabilities) are

usually imposed on the coefficients of any effective field
theory [37]. Nevertheless, even under these stability con-
ditions, the characteristic speeds of the scalar field are found
to diverge during gravitational collapse [35,36,40–42]. This
may be physically pathological, and it is certainly a serious
practical drawback, as the Courant–Friedrichs–Lewy con-
dition [43] forbids to evolve the fully nonlinear dynamics
past this divergence. Recently, [42] managed to evolve
gravitational collapse past the scalar-speed divergence by
slightly modifying the dynamics, with the addition of an
extra driver field [44–46]. This technique, while ad hoc and
approximate, suggests that the divergence is not of physical
origin, but rather linked to thegauge choice, as conjectured in
[36]. In this Letter, we use indeed a gauge choice (including a
nonvanishing shift) that maintains the characteristic speeds
finite during both gravitational collapse and binary evolu-
tions in 3þ 1 dimensions. The latter constitute the first fully
dynamical simulations of the GW generation by binary
systems in theories with screening.
Setup.—In order to perform fully relativistic numerical

simulations of binary mergers in k-essence theory, we
consider the Einstein frame and evolve the CCZ4 formu-
lation [47–49] of the Einstein equations (with the 1+log
slicing [50] and the Gamma-driver shift condition [51])
coupled to a perfect fluid (adopting an ideal-gas equation of
state with Γ ¼ 2) [52] and a scalar field [53]. Without loss of
generality, we fix β ¼ 0 and γ ¼ 1, which ensure the well-
posedness of the Cauchy problem [36] and the existence of
screening solutions [41,42] [54]. Furthermore, we set the
conformal coupling to α ≈ 0.14. As discussed in [42], Λ ∼
ΛDE is intractable numerically due to the hierarchy between
binary and cosmological scales (which leads toΛDE ∼ 10−12

in units adapted to the binary system). Like in [41,42], we
study Λ≳ 1 MeV (for which screening is already present).
The computational code, generated by using the platform

SIMFLOWNY [57–59], runs under the SAMRAI infrastructure
[60–62], which provides parallelization and the adaptive
mesh refinement required to solve the different scales in the
problem. We use fourth-order finite difference operators to
discretize our equations [48]. For the fluid and the scalar, we
use high-resolution shock-capturing (HRSC) methods to
deal with shocks, as discussed in [36,41,42]. A similar GR
code, using the same methods, has been recently used to
simulate binary NSs [52,63]. Our computational domain
ranges from ½−1500; 1500�3 km and contains 6 refinement
levels. Each level has twice the resolution of theprevious one,
achieving a resolution ofΔx6 ¼ 300 mon the finest grid.We
use a Courant factor λc ≡ Δtl=Δxl ¼ 0.4 on each refinement
level l to ensure stability of the numerical scheme. Full
details, together with convergence tests, are provided in the
Supplemental Material [64].
Isolated stars and gravitational collapse.—We construct

initial data for NS systems in k-essence theory by relaxation
[66,67], i.e., we generate GR solutions using LORENE [68]
and evolve them in k-essence until that they relax to

FIG. 1. Top: Central scalar field for rotating and nonrotating stars
produced with our three-dimensional code and nonrotating ones
produced with the static one-dimensional code of [41]. Stellar
masses are M ≈ 1.74 M⊙. Also shown is the expected linear
scaling with Λ [42]. Bottom: Scalar field at the extraction radius
for gravitational collapse (withmassM ≈ 1.74 M⊙), obtainedwith
the one-dimensional code of [42] (using an approximate fixing-
equation approach) and our three-dimensional code.
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stationary solutions. These solutions agree with the non-
rotating solutions for k-mouflage stars found in [41,42],
thus validating our relaxation technique (Fig. 1, top panel).
Similarly, we have also considered rotating solutions in
k-essence, finding for the first time that (i) they behave
qualitatively like the nonspinning ones, and (ii) the screen-
ing mechanism also survives in axisymmetry (Fig. 1, top
panel). We also reproduced the dynamics of stellar oscil-
lations in k-essence found in [41,42], and managed to
follow the (spherical) black-hole collapse of a NS (Fig. 1,
bottom panel). These simulations were inaccessible, due to
the diverging characteristic speeds, within the framework of
[41], without the addition of an extra driver field and a
“fixing equation” [44,45] for it [42]. Here, using the gauge
conditions mentioned above (and typically employed in
numerical-relativity simulations of compact objects in 3þ 1
dimensions), we found no divergence of the characteristic
speeds in our class of k-essence theories. The collapse
obtained with this gauge matches exactly the results obtained
in [42], as shown in the bottom panel of Fig. 1, corroborating
the (approximate) “fixing-equation” technique employed

there. We will therefore use the aforementioned gauge
conditions throughout this Letter.
Binary evolutions.—Like in the isolated case, initial data

for binary systems are constructed by relaxation. The
relaxation process occurs approximately in the initial
4 ms of our simulations, and does not impact significantly
the subsequent binary evolution. We consider binary NSs in
quasicircular orbits with a total gravitational mass
2.8–2.9 M⊙ and mass ratio q ¼ M2=M1 ¼ ½0.72; 1�.
Time snapshots of a binary with mass ratio q ¼ 0.9 in a
theory with Λ ≈ 4 MeV are shown in Fig. 2, displaying
both the star’s density and the scalar field. The screening
radii of the stars in isolation are ∼120 km and thus larger
than the initial system separation. This is the physically
relevant situation, as for Λ ∼ ΛDE the screening radii are
∼1011 km. Also observe the formation of a scalar wake
trailing each star (for the most part), with the two wakes
merging in the last stages of the inspiral.
The response of a detector to the GW signal from NS

binaries is encoded in the Newman-Penrose invariants in
the Jordan frame [69], i.e., projections of the Riemann

FIG. 2. Unequal-mass (q ¼ 0.91) NS binary with Λ ¼ 4.0 MeV, shown at successive times. The color code represents the scalar field,
which is initially centered on each star and then develops into a common “envelope,” while the dark orange represents the fluid density.

FIG. 3. Tensor (l ¼ m ¼ 2) and scalar (l ¼ m ¼ 1 and l ¼ m ¼ 2) strain for a NS merger with q ¼ 0.91, in k-essence and FJBD.
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tensor on a null tetrad l; n;m; m̄ adapted to outgoing
waves. Tensor and scalar GWs are encoded respectively
in ψ4 ¼ −Rlm̄lm̄ ¼ Φψ̃4 and in ϕ22 ¼ −Rlmlm̄ ¼
ϕðϕ̃22 − lνlμ∇ν∇μ logΦ=2þ � � �Þ, with a tilde denoting
quantities in the Einstein frame (where we perform our
simulation) and the dots denoting terms subleading in the
distance r. We place our extraction radius outside the
screening radius of the individual NSs, at distances of
300 km from the center of mass. This is justified because
the distance to the detector is typically≫ 1011 km, which is
the screening radius forΛ ∼ ΛDE, even for Galactic sources.
In this regime, the amplitude of scalar perturbations
decays as 1=r, and therefore ϕ22 ≈ −α

ffiffiffiffiffiffiffiffiffiffiffi
16πG

p ∂2
tϕþ

Oð1=r2Þ [42,66].
The tensor and scalar “strains,” h and hs, are defined by

integrating ψ4 and ϕ22 twice in time, i.e., ψ4 ¼ ∂2
t h=2 and

ϕ22 ¼ ∂2
t hs. The latter definition yields simply hs ∝ ϕ [70].

We then decompose h and hs (or ϕ) into spin-weighted
spherical harmonics. As expected, the dominant contribu-
tion comes from the l ¼ m ¼ 2 mode for the tensor strain.
For the scalar emission the monopole l ¼ m ¼ 0 is sup-
pressed, and the main contribution comes from the
dipole (l ¼ m ¼ 1) mode and (mostly) the quadrupole
(l ¼ m ¼ 2) mode. The results for four simulations—for
Λ ≈ 4, 5, and 7 MeV and for FJBD (corresponding to
Λ → ∞), with α ≈ 0.14—are shown in Fig. 3. Notice that
we do not show the GR tensor strain as it is practically
indistinguishable from the FJBD one on this timescale [66].
The three values of Λ predict screening radii larger than the
initial separation between the stars.
As can be seen, the tensor strains are very similar, even

after the merger (corresponding to the peak amplitude). As
for the scalar, the suppression of the l ¼ m ¼ 0 mode is
expected, sincemonopole emission vanishes in FJBD theory
for quasicircular binaries [71,72]. The l ¼ m ¼ 1 dipole
mode is instead small but nonvanishing, as expected for
unequal-mass binaries in FJBD, with signs of screening
suppression as Λ decreases. However, the (dominant)

l ¼ m ¼ 2 scalar quadrupole mode is always larger than
in FJBD theory, suggesting that the screening is not effective
at suppressing the quadrupole scalar emission in the late
inspiral and merger. The amplitude also seems to increase
when going to low frequencies (early times), in the simu-
lationswithΛ ≈ 4 and5MeV.Note that one does not expect a
continuous limit to FJBD (Λ → ∞) when Λ increases. In
FJBD there is no screening and the binary is always in the
perturbative regime, while in k-essence the separation is
always smaller than the screening radii. This is true even for
observedbinarypulsars,which have separations≲105 kmvs
screening radii of ∼1011 km for Λ ∼ ΛDE.
The dependence on the mass ratio of the binary (which

we set to q ¼ 1, 0.9 and 0.71) is shown in Fig. 4, for the
FJBD and Λ ≈ 4 MeV cases. As can be observed, quadru-
pole fluxes are largely unaffected by q in both theories,
with the k-essence ones consistently larger, especially at
early times. The dipole fluxes in k-essence show again
signs of suppression relative to FJBD, at least for q ≠ 1, but
in both theories they grow as q decreases. This is expected,
since post-Newtonian calculations in FJBD [71,72] predict
that the dipole amplitude should scale as the difference of
the stellar scalar charges, which grows as q decreases. For
q ¼ 1, instead, the dipole flux in FJBD is compatible with
zero (as predicted by post-Newtonian theory [71,72]),
while it does not vanish in k-essence.
Conclusions.—We have performed for the first time fully

relativistic simulations of binary NSs in theories of gravity
with kinetic screening of local scales. We dealt with shocks
in the scalar field by a HRSC method and by adopting a
gauge with nonzero shift that prevents divergences of the
characteristic speeds, which plagued previous attempts
[35,36,41]. With this setup, we have confirmed previous
preliminary results by ourselves [42], which were obtained
with an approximate fixing-equation approach [44,45] and
which hinted at a possible breakdown of the screening in
black-hole collapse. In the late inspiral and merger of
binary NSs, the (subdominant) dipole scalar emission is

FIG. 4. Dipole (l ¼ m ¼ 1) and quadrupole (l ¼ m ¼ 2) scalar strain for merging NS binaries of varying mass ratio, in k-essence
and FJBD.
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screened (at least for unequal masses), but the (dominant)
quadrupole scalar flux is not. In fact, our results seem to
hint at quadrupole scalar emission being as important (or
even larger, especially at low frequencies) in k-essence than
in FJBD theories with the same conformal coupling α, as
long as the strong-coupling scale is in the MeV range that
we can simulate. If this feature survives for Λ ∼ ΛDE,
k-essence theories may become as fine-tuned as FJBD
theory (which will wash out any effect on large-scale
structure observations). Considering for instance the rela-
tivistic double-pulsar system J0737-3039 [7,73,74], in
FJBD the absence of scalar quadrupole radiation constrains
jαj≲ 4.4 × 10−2.

M. B., L. t. H.,M. C., and E B. acknowledge support from
the European Union’s H2020 ERC Consolidator Grant
“Gravity from Astrophysical to Microscopic Scales”
(Grant No. GRAMS-815673) and the EU Horizon 2020
Research and Innovation Programme under the Marie
Sklodowska-Curie Grant Agreement No. 101007855. C. P.
acknowledges support from European Union FEDER funds,
the Ministry of Science, Innovation and Universities and the
Spanish Agencia Estatal de Investigación grant PID2019–
110301 GB-I00. M. B. acknowledges the support of The
multi-messenger physics and astrophysics of neutron stars
(PHAROS) COSTAction (CA16214). We acknowledge the
use of CINECA HPC resources thanks to the agreement
between SISSA and CINECA.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 116, 221101 (2016); 121, 129902(E)
(2018).

[2] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 123, 011102 (2019).

[3] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. D 100, 104036 (2019).

[4] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. D 103, 122002 (2021).

[5] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[6] T. Damour and J. H. Taylor, Phys. Rev. D 45, 1840 (1992).
[7] M. Kramer et al., Science 314, 97 (2006).
[8] P. C. C. Freire, N. Wex, G. Esposito-Farese, J. P. W. Verbiest,

M. Bailes, B. A. Jacoby, M. Kramer, I. H. Stairs, J.
Antoniadis, and G. H. Janssen, Mon. Not. R. Astron. Soc.
423, 3328 (2012).

[9] M. Fierz, Helv. Phys. Acta 29, 128 (1956), https://www.e-
periodica.ch/digbib/view2?pid=hpa-001:1956:29::132#132.

[10] P. Jordan, Z. Phys. 157, 112 (1959).
[11] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[12] E. Babichev, C. Deffayet, and R. Ziour, Int. J. Mod. Phys. D

18, 2147 (2009).
[13] A. Vainshtein, Phys. Lett. 39B, 393 (1972).
[14] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.

Rep. 513, 1 (2012).
[15] K. Koyama, Rep. Prog. Phys. 79, 046902 (2016).
[16] E. Babichev, C. Deffayet, and R. Ziour, Phys. Rev. D 82,

104008 (2010).

[17] E. Babichev and M. Crisostomi, Phys. Rev. D 88, 084002
(2013).

[18] C. de Rham, A. Matas, and A. J. Tolley, Phys. Rev. D 87,
064024 (2013).

[19] C. de Rham, A. J. Tolley, and D. H. Wesley, Phys. Rev. D
87, 044025 (2013).

[20] F. Dar, C. D. Rham, J. T. Deskins, J. T. Giblin, and A. J.
Tolley, Classical Quantum Gravity 36, 025008 (2019).

[21] M. Crisostomi and K. Koyama, Phys. Rev. D 97, 021301(R)
(2018).

[22] B. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM,
INTEGRAL Collaborations), Astrophys. J. Lett. 848, L13
(2017).

[23] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 119, 161101 (2017).

[24] P. Creminelli, M. Lewandowski, G. Tambalo, and F.
Vernizzi, J. Cosmol. Astropart. Phys. 12 (2018) 025.

[25] P.Creminelli,G. Tambalo, F.Vernizzi, andV.Yingcharoenrat,
J. Cosmol. Astropart. Phys. 05 (2020) 002.

[26] E. Babichev, J. High Energy Phys. 07 (2020) 038.
[27] R. V. Wagoner, Phys. Rev. D 1, 3209 (1970).
[28] T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62,

023511 (2000).
[29] C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt,

Phys. Rev. Lett. 85, 4438 (2000).
[30] For binary black holes, instead, no deviations from GR are

expected, since the scalar equation’s source (∝αT) vanishes.
This is also the reason behind the “no-hair” theorem for
isolated black holes in k-essence [31]. The only deviations
from GR in vacuum and in absence of a scalar mass [32]
may occur because of nontrivial initial conditions (which
lead to transient scalar effects [33]) and time-dependent
boundary conditions for ϕ [34].

[31] L. Hui and A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013).
[32] S. L. Detweiler, Phys. Rev. D 22, 2323 (1980).
[33] J. Healy, T. Bode, R. Haas, E. Pazos, P. Laguna, D.

Shoemaker, and N. Yunes, Classical Quantum Gravity
29, 232002 (2012).

[34] T. Jacobson, Phys. Rev. Lett. 83, 2699 (1999).
[35] L. Bernard, L. Lehner, and R. Luna, Phys. Rev. D 100,

024011 (2019).
[36] M. Bezares, M. Crisostomi, C. Palenzuela, and E. Barausse,

J. Cosmol. Astropart. Phys. 03 (2021) 072.
[37] The radiative stability of these conditions in the nonlinear

regime has been shown in [38,39].
[38] C. de Rham and R. H. Ribeiro, J. Cosmol. Astropart. Phys.

11 (2014) 016.
[39] P. Brax and P. Valageas, Phys. Rev. D 94, 043529 (2016).
[40] P. Figueras and T. França, Classical Quantum Gravity 37,

225009 (2020).
[41] L. ter Haar, M. Bezares, M. Crisostomi, E. Barausse, and C.

Palenzuela, Phys. Rev. Lett. 126, 091102 (2021).
[42] M. Bezares, L. ter Haar, M. Crisostomi, E. Barausse, and C.

Palenzuela, Phys. Rev. D 104, 044022 (2021).
[43] R. Courant, K. Friedrichs, and H. Lewy, Math. Ann. 100, 32

(1928).
[44] J. Cayuso, N. Ortiz, and L. Lehner, Phys. Rev. D 96, 084043

(2017).
[45] G. Allwright and L. Lehner, Classical Quantum Gravity 36,

084001 (2019).

PHYSICAL REVIEW LETTERS 128, 091103 (2022)

091103-5

https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevLett.123.011102
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1103/PhysRevD.45.1840
https://doi.org/10.1126/science.1132305
https://doi.org/10.1111/j.1365-2966.2012.21253.x
https://doi.org/10.1111/j.1365-2966.2012.21253.x
https://www.e-periodica.ch/digbib/view2?pid=hpa-001:1956:29::132#132
https://www.e-periodica.ch/digbib/view2?pid=hpa-001:1956:29::132#132
https://www.e-periodica.ch/digbib/view2?pid=hpa-001:1956:29::132#132
https://www.e-periodica.ch/digbib/view2?pid=hpa-001:1956:29::132#132
https://doi.org/10.1007/BF01375155
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1142/S0218271809016107
https://doi.org/10.1142/S0218271809016107
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1088/0034-4885/79/4/046902
https://doi.org/10.1103/PhysRevD.82.104008
https://doi.org/10.1103/PhysRevD.82.104008
https://doi.org/10.1103/PhysRevD.88.084002
https://doi.org/10.1103/PhysRevD.88.084002
https://doi.org/10.1103/PhysRevD.87.064024
https://doi.org/10.1103/PhysRevD.87.064024
https://doi.org/10.1103/PhysRevD.87.044025
https://doi.org/10.1103/PhysRevD.87.044025
https://doi.org/10.1088/1361-6382/aaf5e8
https://doi.org/10.1103/PhysRevD.97.021301
https://doi.org/10.1103/PhysRevD.97.021301
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1088/1475-7516/2018/12/025
https://doi.org/10.1088/1475-7516/2020/05/002
https://doi.org/10.1007/JHEP07(2020)038
https://doi.org/10.1103/PhysRevD.1.3209
https://doi.org/10.1103/PhysRevD.62.023511
https://doi.org/10.1103/PhysRevD.62.023511
https://doi.org/10.1103/PhysRevLett.85.4438
https://doi.org/10.1103/PhysRevLett.110.241104
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1088/0264-9381/29/23/232002
https://doi.org/10.1088/0264-9381/29/23/232002
https://doi.org/10.1103/PhysRevLett.83.2699
https://doi.org/10.1103/PhysRevD.100.024011
https://doi.org/10.1103/PhysRevD.100.024011
https://doi.org/10.1088/1475-7516/2021/03/072
https://doi.org/10.1088/1475-7516/2014/11/016
https://doi.org/10.1088/1475-7516/2014/11/016
https://doi.org/10.1103/PhysRevD.94.043529
https://doi.org/10.1088/1361-6382/abb693
https://doi.org/10.1088/1361-6382/abb693
https://doi.org/10.1103/PhysRevLett.126.091102
https://doi.org/10.1103/PhysRevD.104.044022
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839
https://doi.org/10.1103/PhysRevD.96.084043
https://doi.org/10.1103/PhysRevD.96.084043
https://doi.org/10.1088/1361-6382/ab0ee1
https://doi.org/10.1088/1361-6382/ab0ee1


[46] R. Cayuso and L. Lehner, Phys. Rev. D 102, 084008
(2020).

[47] D. Alic, C. Bona-Casas, C. Bona, L. Rezzolla, and C.
Palenzuela, Phys. Rev. D 85, 064040 (2012).

[48] C. Palenzuela, B. Miñano, D. Viganò, A. Arbona, C.
Bona-Casas, A. Rigo, M. Bezares, C. Bona, and J. Massó,
Classical Quantum Gravity 35, 185007 (2018).

[49] M. Bezares, C. Palenzuela, and C. Bona, Phys. Rev. D 95,
124005 (2017).

[50] C. Bona, J. Masso, E. Seidel, and J. Stela, Phys. Rev. Lett.
75, 600 (1995).

[51] M. Alcubierre, B. Bruegmann, P. Diener, M. Koppitz, D.
Pollney, E. Seidel, and R. Takahashi, Phys. Rev. D 67,
084023 (2003).

[52] S. L. Liebling, C. Palenzuela, and L. Lehner, Classical
Quantum Gravity 37, 135006 (2020).

[53] M. Bezares and C. Palenzuela, Classical Quantum Gravity
35, 234002 (2018).

[54] This is also the simplest choice that satisfies recent positivity
bounds [55] for a healthy (although unknown) UV com-
pletion of the theory. Those bounds dictate that the leading
term in KðXÞ should have odd power and a negative
coefficient. See, however, [56], for a different claim.

[55] A.-C. Davis and S. Melville, J. Cosmol. Astropart. Phys. 11
(2021) 012.

[56] K. Aoki, S. Mukohyama, and R. Namba, J. Cosmol.
Astropart. Phys. 10 (2021) 079.

[57] A. Arbona, A. Artigues, C. Bona-Casas, J. Massó, B.
Miñano, A. Rigo, M. Trias, and C. Bona, Comput. Phys.
Commun. 184, 2321 (2013).

[58] A. Arbona, B. Miñano, A. Rigo, C. Bona, C. Palenzuela, A.
Artigues, C. Bona-Casas, and J. Massó, Comput. Phys.
Commun. 229, 170 (2018).

[59] Simflowny project website (2021), https://bitbucket.org/
iac3/simflowny/wiki/Home.

[60] R. D. Hornung and S. R. Kohn, Concurr. Comput. 14, 347
(2002).

[61] B. T. Gunney and R.W. Anderson, J. Parallel Distrib.
Comput. 89, 65 (2016).

[62] Samrai project website (2021), https://computation.llnl.gov/
project/SAMRAI/.

[63] S. L. Liebling, C. Palenzuela, and L. Lehner, Classical
Quantum Gravity 38, 115007 (2021).

[64] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.128.091103 for details about the evo-
lution equations being used and the results of convergence
tests. The Supplemental Material includes Ref. [65].

[65] C. Gundlach, J. M. Martin-Garcia, G. Calabrese, and I.
Hinder, Classical Quantum Gravity 22, 3767 (2005).

[66] E. Barausse, C. Palenzuela, M. Ponce, and L. Lehner, Phys.
Rev. D 87, 081506(R) (2013).

[67] C. Palenzuela, E. Barausse, M. Ponce, and L. Lehner, Phys.
Rev. D 89, 044024 (2014).

[68] LORENE home page (2010), http://www.lorene.obspm.fr/.
[69] D. M. Eardley, D. L. Lee, and A. P. Lightman, Phys. Rev. D

8, 3308 (1973).
[70] D. Gerosa, U. Sperhake, and C. D. Ott, Classical Quantum

Gravity 33, 135002 (2016).
[71] T. Damour and G. Esposito-Farese, Classical Quantum

Gravity 9, 2093 (1992).
[72] C.M.Will andH.W. Zaglauer, Astrophys. J. 346, 366 (1989).
[73] A. Noutsos et al., Astron. Astrophys. 643, A143 (2020).
[74] M. Kramer et al., Phys. Rev. X 11, 041050 (2021).
[75] LIGO and Virgo bounds on deviations from GR at

the quadrupole or dipole level produce weaker (if any)
constraints on α.

PHYSICAL REVIEW LETTERS 128, 091103 (2022)

091103-6

https://doi.org/10.1103/PhysRevD.102.084008
https://doi.org/10.1103/PhysRevD.102.084008
https://doi.org/10.1103/PhysRevD.85.064040
https://doi.org/10.1088/1361-6382/aad7f6
https://doi.org/10.1103/PhysRevD.95.124005
https://doi.org/10.1103/PhysRevD.95.124005
https://doi.org/10.1103/PhysRevLett.75.600
https://doi.org/10.1103/PhysRevLett.75.600
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.1088/1361-6382/ab8fcd
https://doi.org/10.1088/1361-6382/ab8fcd
https://doi.org/10.1088/1361-6382/aae87c
https://doi.org/10.1088/1361-6382/aae87c
https://doi.org/10.1088/1475-7516/2021/11/012
https://doi.org/10.1088/1475-7516/2021/11/012
https://doi.org/10.1088/1475-7516/2021/10/079
https://doi.org/10.1088/1475-7516/2021/10/079
https://doi.org/10.1016/j.cpc.2013.04.012
https://doi.org/10.1016/j.cpc.2013.04.012
https://doi.org/10.1016/j.cpc.2018.03.015
https://doi.org/10.1016/j.cpc.2018.03.015
https://bitbucket.org/iac3/simflowny/wiki/Home
https://bitbucket.org/iac3/simflowny/wiki/Home
https://bitbucket.org/iac3/simflowny/wiki/Home
https://doi.org/10.1002/cpe.652
https://doi.org/10.1002/cpe.652
https://doi.org/10.1016/j.jpdc.2015.11.005
https://doi.org/10.1016/j.jpdc.2015.11.005
https://computation.llnl.gov/project/SAMRAI/
https://computation.llnl.gov/project/SAMRAI/
https://computation.llnl.gov/project/SAMRAI/
https://computation.llnl.gov/project/SAMRAI/
https://doi.org/10.1088/1361-6382/abf898
https://doi.org/10.1088/1361-6382/abf898
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.091103
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.091103
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.091103
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.091103
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.091103
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.091103
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.091103
https://doi.org/10.1088/0264-9381/22/17/025
https://doi.org/10.1103/PhysRevD.87.081506
https://doi.org/10.1103/PhysRevD.87.081506
https://doi.org/10.1103/PhysRevD.89.044024
https://doi.org/10.1103/PhysRevD.89.044024
http://www.lorene.obspm.fr/
http://www.lorene.obspm.fr/
http://www.lorene.obspm.fr/
http://www.lorene.obspm.fr/
https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1088/0264-9381/33/13/135002
https://doi.org/10.1088/0264-9381/33/13/135002
https://doi.org/10.1088/0264-9381/9/9/015
https://doi.org/10.1088/0264-9381/9/9/015
https://doi.org/10.1086/168016
https://doi.org/10.1051/0004-6361/202038566
https://doi.org/10.1103/PhysRevX.11.041050

