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We develop an analytical approach for the description of quantum many-body scars in PXP models. We
show that the scarred dynamics in the PXP model on a complete bipartite graph can be interpreted as a one-
dimensional chiral scattering problem, and solve this problem analytically. The insights from this analysis
allow us to predict that dynamical signatures of scars in PXP models can be enhanced by spin squeezing the
initial states. We show numerically that this stabilization mechanism applies not only to the complete bipartite
graph but also to one- and two-dimensional lattices, which are relevant for Rydberg atom array experiments.
Moreover, our findings provide a physical motivation for Hamiltonian deformations reminiscent of those
known to produce perfect scars.
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When a quantum many-body system is brought out of
equilibrium, its constituents typically relax to their indi-
vidual equilibrium states, in a process referred to as
thermalization [1,2]. Importantly, thermalization occurs
even in closed quantum systems, since the different
constituents of an interacting many-body system can act
as a reservoir for each other. This paradigm provides a very
powerful framework for understanding the emergence of
statistical mechanics from a microscopic perspective [3].
Recently, quantum many-body scarring, a novel phe-

nomenon that defies this paradigm, has gained significant
interest [4]. Quantum many-body scars (QMBS) have
been discovered in quantum simulation experiments with
Rydberg atom arrays [5], where certain ordered initial
states undergo periodic dynamics, in contrast to the
expected relaxation of local observables to stationary,
thermal values. Since then, significant research efforts have
been devoted to uncovering mechanisms which underlie
and enhance this phenomenon [6–9]. While scars have
since been discovered also in other models [10–19], their
origin in the original Rydberg model remains not com-
pletely understood. Various methods to address this prob-
lem have been employed, including Krylov subspace
methods [20,21] and variational approaches [22,23].
In this work, we introduce a complementary approach,

by mapping the dynamics associated with QMBS in
Rydberg atom arrays onto a scattering problem in an
appropriate limiting case. We provide an analytical solution
of this scattering problem, whose interpretation offers a
new perspective on the mechanisms underlying QMBS. As
an immediate application we also identify physical mech-
anisms by which the dynamical signatures of scars can be
enhanced. Specifically, the scattering matrix suggests an

enhancement of the periodic revivals by squeezing the
initial states, which we confirm numerically for various
lattices. Moreover, our approach also provides a clear
physical motivation for Hamiltonian deformations to
PXP models that result in perfect QMBS, which have
been introduced ad hoc in previous studies [6,7].
Model.—To understand the dynamics of scars in

Rydberg atom arrays, we work within the well-established
PXP approximation [24]. Specifically, we consider a
graph G ¼ ðV; EÞ with vertices V and edges E, which
induces a PXP model as follows: we identify each vertex
i ∈ V with a qubit with states j0ii and j1ii, and introduce a
projection operator Pe for each edge e ¼ fi; jg ∈ E as
Pe ¼ 1 − j1iih1j ⊗ j1ijh1j. We call the common eigen-
space of all these commuting projectors with eigenvalue
þ1 the constrained spaceHP. It contains all states with no
neighboring qubits simultaneously in state j1i, akin to a
nearest-neighbor approximation of the Rydberg-blockade
constraint [25–27]. The projector onto this space is de-
noted P ¼ Q

e∈E Pe. Within HP, dynamics are governed
by the so-called PXP Hamiltonian,

H ¼ Ω
2

XN
i¼1

PσxiP; ð1Þ

which has a simple interpretation: each qubit undergoes
single particle Rabi oscillations if all its neighbors are in
the state j0i, while its dynamics are frozen if at least one of
its neighbors is in the state j1i. Despite its simple form, the
conditional dynamics render the Hamiltonian generically
nonintegrable [4].
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We are interested in PXP models on bipartite graphs,
V ¼ A ∪ B, where A and B denote the two partitions. On
such graphs, HP contains two extremal states jZA

2 i and
jZB

2 i, where all qubits i ∈ A are in the state j1ii and all
qubits i ∈ B are in state j0ii for jZA

2 i ¼ j1i⊗i∈Aj0i⊗i∈B and
vice versa for jZB

2 i ¼ j0i⊗i∈Aj1i⊗i∈B. These states play an
important role for scars in PXP models; specifically, it was
discovered in Ref. [5] that in one dimension (1D), these
states undergo approximate periodic dynamics, with alter-
nating revivals of the two Z2 states: e−iHT1D=2jZA

2 i ≈ jZB
2 i

and e−iHT1D=2jZB
2 i ≈ jZA

2 i, with T1D ≈ 2π × 1.51 Ω−1.
Recently, experiments with Rydberg atom arrays ob-
served analogous scars in bipartite lattices in two dimen-
sions (2D) [8]. Importantly, such periodic dynamics
imply that the Z2 states have non-negligible overlap with
only an extensive number of equally spaced, atypical
eigenstates of the Hamiltonian, the so-called quantum
many-body scars [20].
To develop an intuitive interpretation of these periodic

dynamics, we find it convenient to first consider a special
limiting case: the complete bipartite graph (CBG), where
each site in A is neighboring to each site in B, i.e.,
E ¼ ffi; jgji ∈ A; j ∈ Bg, with jAj ¼ jBj ¼ N=2, resulting
in dimðHPÞ ¼ 2N=2þ1 − 1 (see Fig. 1). In the thermody-
namic limit N → ∞, we will show below that the scar
dynamics on this graph map onto a 1D scattering problem
that can be solved analytically.

On the CBG, the PXP Hamiltonian simplifies to

H ¼ ŜxA ⊗ jϕiBhϕj þ jϕiAhϕj ⊗ ŜxB; ð2Þ

where we have set Ω ¼ 1 for simplicity and defined glo-
bal spin operators in bipartiton A as ŜμA ¼ 1=2

P
i∈A σ

μ
i

(μ ∈ fx; y; zg) and analogously for B. The states jϕiA ¼
j0i⊗i∈A and jϕiB ¼ j0i⊗i∈B denote the state where all
qubits i ∈ A or i ∈ B are in the j0ii state, respectively.
We refer to jϕi as the vacuum state. Whenever it is clear
from the context we drop the subscripts indicating the
partition. For the CBG, a general time-dependent state may
be written as

jψðtÞi ¼ jAðtÞi ⊗ jϕi þ jϕi ⊗ jBðtÞi: ð3Þ

Note that jψðtÞi is normalized but jAðtÞi and jBðtÞi are not
individually normalized. This form highlights explicitly the
fact that partition A can only be in a state other than the
vacuum state if partition B is in the vacuum state, and vice
versa. The time-dependent Schrödinger equation for a state
(3) associated with the Hamiltonian (2) takes the form of
two coupled equations:

i∂tjAðtÞi ¼ ŜxjAðtÞi þ hϕjBðtÞiŜxjϕi;
i∂tjBðtÞi ¼ ŜxjBðtÞi þ hϕjAðtÞiŜxjϕi: ð4Þ

Evidently, the coupling is governed by the overlap of the
state on either partition with the vacuum state. For a random
state, this overlap is exponentially small in the system size N
and can be neglected. In this approximation, the decoupled
equations can be trivially solved: the solution is simply a
global rotation of all spins in the active partition, i.e.,
jAðtÞi ¼ e−iŜ

xtjAð0Þi and jBðtÞi ¼ e−iŜ
xtjBð0Þi, respec-

tively. Importantly, one can check for each approximate
solution that the overlap with the vacuum state remains
exponentially small at all times, thus justifying the decou-
pling approximation a posteriori. Crucially, for the Z2 initial
states the decoupling approximation breaks down after
some finite time. This allows us to distinguish two types
of dynamics induced by (2): trivial oscillatory dynamics of
uncoupled partitions, and dynamics of coupled partitions.
Even though the former is largely irrelevant for our analysis,
it is important to stress that it is associated with an approxi-
mate integrability of each partition. This is a peculiarity of the
CBG: on other bipartite graphs, the PXP Hamiltonian is
chaotic and thermalizing for generic initial states [20]. This
approximate integrability on the CBG can be easily removed
without affecting the dynamics of the Z2 states, for example,
by including additional integrability-breaking terms in the
Hamiltonian that vanish on all states that are invariant under
permutations of spins within a partition. An explicit example
of such a construction is given in Ref. [7]. We stress that our
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FIG. 1. (a) Schematic illustration of the scattering problem.
States on either bipartition of a CBG are represented on a
generalized Bloch sphere, parametrized by a position observable
x along a great circle. An incident plane wave (wave number k)
on partition A, with partition B in the vacuum state (left), is
scattered into a superposition with one of the two partitions in the
vacuum state (right). (b) Scattering probabilities jt0ðkÞj2 and
jt1ðkÞj2 and unsqueezed (ξ ¼ 0) and squeezed (ξ ¼ 1.2) wave
functions of the Z2 state. (c) While the scattering picture applies
to the CBG (top), key insights generalize to other bipartite
lattices, such as the 1D line or 2D square lattice.
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analysis of the dynamics of the Z2 states on the CBG thus
holds also in such chaotic versions of the CBG.
Scattering problem.—For the remainder of this work,

we focus on the nontrivial dynamics resulting from the
Z2 initial states. For the sake of concreteness, we
choose A as the initially active partition, i.e., jAð0Þi ¼
jS; θ0 ¼ π;φ0 ¼ π=2i and jBð0Þi ¼ 0, where we have
defined spin coherent states jS; θ;φi≡ ½cosðθ=2Þj0i þ
e−iφ sinðθ=2Þj1i�⊗N=2 [28]. Neglecting any coupling
between the partitions, these states evolves as jAðtÞi ¼
jS; π − t; π=2i and jBðtÞi ¼ 0. The overlap of the spin
coherent state jS; θ; π=2i with the vacuum state is given

by hϕjS; θ; π=2i ¼ cosN=2ðθ=2Þ !N≫1
expð−Nθ2=8Þ [35].

This justifies the decoupling approximation for times
t≲ π − 2=

ffiffiffiffi
N

p
. At later times, however, the state then

enters a narrow neighborhood of the vacuum state and the
coupling between the two partitions needs to be taken into
account properly. A suitable framework to tackle the dynam-
ics in this regime is the Holstein-Primakoff transformation
[28], which embeds the Hilbert space containing states close
to the vacuum state in that of a bosonic mode via

x̂ ¼ iffiffiffi
2

p ðâ† − âÞ ¼ −
1ffiffiffi
S

p lim
S→∞

Ŝy;

p̂ ¼ 1ffiffiffi
2

p ðâ† þ âÞ ¼ 1ffiffiffi
S

p lim
S→∞

Ŝx; ð5Þ

where â is the bosonic ladder operator that annihilates the
vacuum j0i ¼ limN→∞jϕi, and where S ¼ N=4. The eigen-
states of x̂ and p̂ with eigenvalues x and p are denoted by jxi
and jpi, respectively. Here, x is identified with the (rescaled)
position on theφ ¼ π=2 great circle of the spin coherent state
Bloch sphere, x ∼

ffiffiffi
S

p
θ.

We proceed in solving the coupled equations (4) in the
vicinity of the vacuum state by constructing the eigenstates
of the associated time-independent Schödinger equation in
the position basis. That is, we consider solutions of the form
jAðtÞi ¼ e−iEtjAi and jBðtÞi ¼ e−iEtjBi, where the eigen-
states in the position basis, AðxÞ ¼ hxjAi and BðxÞ ¼ hxjBi,
satisfy

A0ðxÞ ¼ ikAðxÞ − hϕjBiϕ0ðxÞ;
B0ðxÞ ¼ ikBðxÞ − hϕjAiϕ0ðxÞ: ð6Þ

Here, we have introduced the rescaled energy eigenvalue
k ¼ E=

ffiffiffi
S

p
and we use the notation f0ðxÞ to indicate the

derivative of fðxÞ with respect to x. The vacuum state in this
position basis is ϕðxÞ ¼ π−1=4e−x

2=2 (see Supplemental
Material [28]).
The coupled differential equations (6) can be interpreted

as a scattering problem for two chiral channels coupled by a
short range nonlocal potential. In both channels, A andB, the
system can freely propagate toward increasing x, except in

the vicinity of x ¼ 0, where the channels are coupled. There
the system can either remain in the same channel or scatter
into the other channel, before leaving the scattering region.
The relevant data characterizing the scattering solutions are
thus the (energy dependent) transmission coefficients t0ðkÞ
and t1ðkÞ, associated with no change of the channel and a
flip of the channel in the scattering process, respectively (see
Fig. 1). The chiral nature and the elasticity of the scattering
process guarantee jt0ðkÞj2 þ jt1ðkÞj2 ¼ 1.
We can formally solve the differential equations (6) to

obtain analytical expressions for both scattering coeffi-
cients t0ðkÞ and t1ðkÞ, conveniently expressed using the
short-hand notation for the (iterated) Gaussian integrals
GðkÞ ¼ R∞

−∞ ϕðzÞeikzdz, Hðk; xÞ ¼ R
x
x0
ϕ0ðzÞe−ikzdz, and

FðkÞ ¼ R
∞
−∞ ϕðzÞeikzHðk; zÞdz. The solutions read t0ðkÞ ¼

1þ GðkÞFðkÞHðkÞ=½1 − FðkÞ2� and t1ðkÞ ¼ GðkÞHðkÞ=
½FðkÞ2 − 1�, with HðkÞ ¼ limx→∞Hðk; xÞ [28]. The trans-
mission coefficients are system size independent and the
associated probabilities jt0ðkÞj2 and jt1ðkÞj2 are shown in
Fig. 1. Importantly, t0ð0Þ vanishes exactly, corresponding
to perfect transfer between the channels at zero energy,
i.e., jt1ð0Þj ¼ 1. This leads to a transfer window of width
∼1 around k ¼ 0. The scattering phase shift at zero
energy, ζ1 ¼ ið1=t1Þðdt1=dkÞjk¼0, evaluates numerically
to ζ1 ¼ 2.014. In the opposite limit of jkj ≫ 1, the two
channels effectively decouple.
The initial state of interest here, jZA

2 i, corresponds to
an incoming Gaussian wave packet in channel A, i.e.,
hxjAðt ¼ 0Þi ¼ π−1=4e−ðx−SπÞ2=2 and hxjBðt ¼ 0Þi ¼ 0. Its
decomposition into scattering eigenstates is thus also
Gaussian, with Fourier amplitudes ÃðkÞ ¼ 21=2π1=4e−k

2=2.
The probability P1 ¼ ð1=2πÞ R∞

−∞ jt1ðkÞÃðkÞj2dk of a
change of channel at the first scattering event evaluates
to P1 ≈ 0.906. After the scattering event, one can again
apply the decoupling approximation, to propagate the
wave function between subsequent scattering events at
t ≈ ð2Nþ 1Þπ, showing that a large value for P1 is
required for the expected alternating (approximate) revi-
vals of the two Z2 states. The quality of these revivals is
quantified by the many-body fidelity gðtÞ ¼ jhψð0ÞjψðtÞij,
which is displayed in Fig. 2. It shows alternating smaller
and larger peaks, where the former (at Ωt ≈ 2π) result
from the finite probability of the system not changing
channel in the scattering process (1 − P1 ≈ 0.094), while
the latter (at Ωt ≈ 4π) appears due to two consecutive
scattering processes resulting in two successive changes
of channel. The height of this first (large) revival of gðtÞ,
which we denote gmax, can thus be calculated as

gmax ¼
���� 1

2π

Z
∞

−∞
eiτÃ2ðkÞÃðkÞ�dk

����; ð7Þ

where Ã2ðkÞ ¼ ðt0ðkÞ2 þ t1ðkÞ2ÞÃðkÞ is the wave function
of the state on bipartition A after two scattering events
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and the phase τ is introduced to account for the phase shift
acquired by Ã2ðkÞ relative to ÃðkÞ. Since jt1ðkÞ2ÃðkÞj ≫ j
t0ðkÞ2ÃðkÞj, as a first approximation we may choose
τ ¼ 2ζ1 for which gmax ≈ 0.818. The exact phase shift
maximizing gmax can be determined numerically as τ ¼
3.55 and results in gmax ≈ 0.846. The fact that gmax < 1
reflects the fact that the PXP models host only approxi-
mate QMBS.
Squeezed QMBS.—The scattering picture directly sug-

gests the possibility of constructing different initial states
which will display enhanced revivals. Specifically, the
transfer window at k ¼ 0 (see Fig. 1) indicates that P1 and
gmax could be increased by squeezing the width of
the initial state momentum distribution ÃðkÞ below 1.
A natural candidate is the class of spin squeezed states
[36–38], defined as jS; θ;φ; χi ¼ Vχ jS; θ;φi with

Vχ ¼ eχ=2½ðŜ
þÞ2−ðŜ−Þ2�: ð8Þ

A squeezed Z2 initial state jψð0Þi ¼ Vχ ⊗ 1jZA
2 i thus

corresponds to a squeezed Fourier wave packet
ÃðkÞ ¼ 21=2π1=4e−k

2e2ξ=2þξ=2, with ξ ¼ χN=2. As shown
in Fig. 2, squeezing the initial states indeed leads to larger
and more long-lived revivals with increasing ξ [until finite
system size effects become relevant at ξ ∼ logðNÞ].
Even though the scattering problem is rigorously defined

only on the infinite CBG, we find that spin squeezing of the
initial Z2 states leads to enhanced revivals in PXP models
also on other bipartite graphs. This requires a generalization
of the spin squeezing operator. A physically motivated
choice that takes into account the locality on a given
bipartite graph is the quasilocal transformation

Uχ ¼ eχ=2
P

i∈B
½ðŜþi Þ2−ðŜ−i Þ2�: ð9Þ

Here, the Ŝ�i denote the ladder operators for the compound
spin systems of the nearest neighbors of the ith site. For
instance, in the case of a circle of N sites,

Ŝ�i ¼ 1

2
σ�i−1 þ

1

2
σ�iþ1; ð10Þ

where the addition in the subscript is modulo N. We will
refer to this as local squeezing, while we dub the trans-
formation (8) global squeezing. The physical reasoning
underlying this choice of squeezing operator is the follow-
ing. Each spin on partition B is initially blockaded by its z
nearest neighbors and frozen in the state j0ii. From the
perspective of this spin, this is analogous to the situation in
a CBGof size 2z. Based on our results for the CBG,wemay
expect that squeezing of the initial state of its nearest
neighbors liberates that particular spin most efficiently,
resulting in more pronounced revivals. Applying this
argument to all spins in partition B implies (9).
We solve for the dynamics of squeezed initial states in

the 1D chain and 2D square lattice (with periodic
boundary conditions) by numerical integration of the
corresponding Schrödinger equation on finite system
sizes, and compare the local squeezing approach (9) with
a naive application of a global squeezing operation (see
Fig. 3). For small squeezing, both approaches result in
enhanced and more long-lived revivals with increasing ξ.
Importantly, the local squeezing gives significantly better
results, leading to almost perfect revivals and thus
supporting the physical reasoning outlined above.
Hamiltonian deformations.—Our interpretation of the

PXP dynamics in terms of a scattering problem has
motivated deformations of the initial states in order to
enhance the periodic dynamics associated with QMBS in
the PXP model. In a complementary view, one might instead
deform the Hamiltonian and leave the initial state invariant.
Specifically, instead of squeezing the initial state, we can in a
unitarily equivalent way conjugate the Hamiltonian with
the squeezing operators, appropriately symmetrized across
the two partitions [28], to obtain Hχ;global ¼ V†

χHVχ or
Hχ;local ¼ U†

χHUχ , respectively. Clearly, these transformed
Hamiltonians will induce enhanced revivals with increasing
χ, that now occur for the plain jZA

2 i initial state rather than its
squeezed counterpart. Thus, our analysis ultimately allows
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FIG. 2. (a) Many-body fidelity gðtÞ for a CBG with N ¼ 200,
initialized in both an unsqueezed (ξ ¼ 0) and a squeezed
(ξ ¼ 1.2) initial Z2 state. (b) Maximal revival fidelity gmax,
and transmission probability P1 (inset) as a function of the
squeezing parameter ξ for various system sizes. We note a finite-
size effect at high squeezing, which occurs when squeezing
expands the spin coherent state around a great circle of a finite-
radius Bloch sphere.
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FIG. 3. (a) Many-body fidelity gðtÞ for a 1D circle with
N ¼ 24, initialized in both an unsqueezed (ξ ¼ 0) and globally
and locally squeezed (ξ ¼ 1.2) initial Z2 state. (b) First maximum
of the many-body fidelity gmax as a function of squeezing
parameter ξ, for initial Z2 states squeezed both globally and
locally, on 1D and 2D lattices with N ¼ 24 sites.
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us to construct a deformation of the PXP Hamiltonian that
gives rise to perfect revivals on the infinite CBG and
significantly enhanced revivals on other lattices. For instance,
in 1D the deformed Hamiltonian is

Hχ;local ¼ H −
Ωχ
2

X
i

PσxiPðσzi−2 þ σziþ2Þ þOðχ2Þ: ð11Þ

Remarkably, the leading order terms introduced by this
deformation are of the same form as those studied in
Refs. [6,7], where it was shown that they lead to virtually
perfect QMBS. However, the physical motivation for the
particular form of such deformations has remained uncertain.
In contrast, these deformations emerge naturally in the
scattering picture developed in this work. This highlights
one of the main merits of the scattering approach.
Discussion.—In this work we have discussed the phe-

nomenon of QBMS in PXP models, developing a new
analytical approach to studying QMBS based on an equiv-
alence between the PXP model on the CBG and a 1D chiral
scattering problem. The resulting novel insights into the
mechanism underlying scars in PXP models allow the
conclusion that dynamical signatures of QMBS can be
enhanced by spin squeezing. This could prove a valuable
tool for quantum information processing tasks based on
quantum many-body scars [39], and could potentially be
combined with other approaches of actively stabilizing
QMBS, for instance through driving [8,9,40,41].
While our focus on PXP models on CBGs is motivated

by the analytical tractability, we note that such models
could be potentially realized in Rydberg atom array experi-
ments. For instance, in a two-species setting [42] with
appropriately chosen Rydberg states, weak intraspecies
interactions and strong interspecies interactions could result
in an effective PXP model on the CBG where the two
atomic species represent the two partitions.

We thank M. Endres, S. Choi, W.W. Ho, G. Giudici and
H. Bernien for useful discussions. This work is supported
by the Erwin Schrödinger Center for Quantum Science and
Technology through a Discovery Grant.

Note added—After completing this work, an independent
study of a related model appeared in Ref. [43].
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