
Finite Time Large Deviations via Matrix Product States

Luke Causer ,1,2 Mari Carmen Bañuls ,3,4 and Juan P. Garrahan1,2
1School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

2Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems,
University of Nottingham, Nottingham NG7 2RD, United Kingdom

3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
4Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany

(Received 25 October 2021; accepted 15 February 2022; published 4 March 2022)

Recent work has shown the effectiveness of tensor network methods for computing large deviation
functions in constrained stochastic models in the infinite time limit. Here we show that these methods can
also be used to study the statistics of dynamical observables at arbitrary finite time. This is a harder problem
because, in contrast to the infinite time case, where only the extremal eigenstate of a tilted Markov
generator is relevant, for finite time the whole spectrum plays a role. We show that finite time dynamical
partition sums can be computed efficiently and accurately in one dimension using matrix product states and
describe how to use such results to generate rare event trajectories on demand. We apply our methods to the
Fredrickson-Andersen and East kinetically constrained models and to the symmetric simple exclusion
process, unveiling dynamical phase diagrams in terms of counting field and trajectory time. We also discuss
extensions of this method to higher dimensions.
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Introduction.—Large deviation (LD) theory provides a
powerful framework to investigate the statistical fluctua-
tions of time-averaged observables in stochastic systems
(for reviews, see, e.g., Refs. [1–4]). At long times (assum-
ing finite correlation times) the probabilities of such
observables obey a LD principle, and the corresponding
scaled cumulant generating function (see below) can be
retrieved from the leading eigenvalue of the “tilted” (or
deformed or biased) generator [1]. For large systems,
estimating this eigenvalue is difficult, so one resorts to
sampling the corresponding biased trajectory ensemble via
numerical methods, such as trajectory importance sampling
[5–8], population dynamics [9–11], optimal control
[12–18], or machine learning approaches [19–24]. For
lattice models, recent work has focused on the use of
tensor network (TN) techniques to approximate the leading
eigenvector of the tilted generator through variational
means [25–27] or power methods [28].
A harder problem is that of computing the statistics of

time-averaged observables for finite time [29–31]. The
reason is that away from the long time limit the corre-
sponding dynamical partition sums (i.e., moment generat-
ing functions) do not obey a LD principle in time—only
obeying a LD principle in space for large sizes—and, as a
consequence, they are not determined only by the leading
eigenvalue of the tilted generator, but by their whole
spectrum. If time is very short, one can get away with direct
sampling, but for intermediate times the usual sampling
approaches fall short [32]. Here we develop a scheme to
study these rare events by implementing well-developed TN

techniques to simulate time evolution. This allows us to
calculate dynamical partition functions for trajectories of
arbitrary time extent. Furthermore, we show how to use the
results here to directly simulate stochastic trajectories in
finite time tilted ensembles at small computational cost, thus
generalizing the method of Ref. [32].
We focus for concreteness on one-dimensional kinetically

constrained models (KCMs)—often used in the modeling of
structural glasses [2,33–35]—specifically the Fredrickson-
Andersen (FA) [36] and the East [37] models, as well as on
the symmetric simple exclusionprocess (SSEP). BothKCMs
and SEPs display phase transitions in their dynamical LDs in
the long time limit [38–44]. With the methods developed
here, we are able to construct the dynamical phase diagram
both as a function of counting field and of trajectory time,
determining finite time scaling of active-inactive phase
transitions in these models and uncovering the emergence
with time of the correlated structure of the active phase in the
East model and the SSEP.
Models.—The three models we consider live in a one-

dimensional lattice of N sites, with binary variables nj ¼
0; 1 for each j ¼ 1;…; N, evolving under continuous-time
Markov dynamics with local transitions. The probability
for each configuration jxi ¼ jn1;…; nNi at time t, encoded
in a vector jPðtÞi ¼ P

x Pðt; xÞjxi, evolves deterministi-
cally via a master equation, ∂tjPðtÞi ¼ WjPðtÞi, where W
is the Markov generator. Being a stochastic operator,W has
a structure W ¼ K − R, with an off-diagonal matrix of
transition rates K and a diagonal matrix of positive escape
rates R.
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For the KCMs the generator reads

WKCM ¼
X

i

fi½cσþi þ ð1 − cÞσ−i

− cð1 − niÞ − ð1 − cÞni�; ð1Þ

where c ∈ ð0; 1=2� defines the site occupation at equilib-
rium, and σ�i are the Pauli raising and lowering operators at
site i. Spin flips are only permitted if the kinetic constraint
fi is satisfied. We consider two paradigmatic KCMs, the
Fredrickson-Andersen [36] model and the East [37] model.
They are defined by the respective constraint functions

fFAi ¼ ni−1 þ niþ1; fEasti ¼ ni−1: ð2Þ

We consider lattices with open boundary conditions
(OBCs) to allow for efficient tensor network contractions.
For numerical convenience, we choose the fixed boundaries
n1 ¼ nN ¼ 1 for the FA [45] model and n1 ¼ 1 for the East
model. The corresponding stationary states (SS) are prod-
uct states,

jSSFAi ¼ j1i ⊗ ½ð1 − cÞj0i þ cj1i�⊗N−2 ⊗ j1i; ð3Þ

jSSEasti ¼ j1i ⊗ ½ð1 − cÞj0i þ cj1i�⊗N−1: ð4Þ

The third model we consider is the symmetric simple
exclusion process whose generator reads

WSSEP ¼ 1

2

X

i

½σþi σ−iþ1 þ σ−i σ
þ
iþ1

− ðni þ niþ1Þ þ 2niniþ1�: ð5Þ

For the SSEP we consider OBCs such that particles can
enter and leave at the boundaries with rate 1=4. The
stationary state is jSSSSEPi ¼ 2−N j−i ¼ 2−N

P
x jxi, with

the “flat” state h−j being the leading left eigenvector of each
generator above.
Dynamical rare events and LDs.—We now consider the

ensemble of all possible trajectories fωαg with trajectory
time t, where ωα ¼ fx0 → xt1 → � � � → xtg defines jumps
to configurations xtk at times tk. The probability of
observing the value KðωαÞ ¼ K of some time-integrated
observable K is

PtðKÞ ¼
X

α

πðωαÞδ½KðωαÞ − K�; ð6Þ

where πðωαÞ defines the probability of observing the
trajectory. The corresponding moment generating function
(or trajectory partition sum) is

ZtðsÞ ¼
X

α

πðωαÞe−sKðωαÞ ð7Þ

where the “counting field” s is conjugate to the observable.
For large times, both Eqs. (6) and (7) take a large

deviation form in time [1,38,41,46], PtðKÞ ≍ e−tφðK=tÞ and
ZtðsÞ ≍ etθðsÞ. The LD rate function φðK=tÞ and the scaled
cumulant generating function θðsÞ play the roles of a
trajectory entropy density and a free-energy density,
respectively, and are related through the Legendre trans-
form θðsÞ ¼ −mink½skþ φðkÞ�.
The partition sum Eq. (7) can be written as

ZtðsÞ ¼ h−jetWs jssi ð8Þ

in terms of the tilted generator Ws [1,38,41,46]. In what
follows we focus on the dynamical activity [38,41,46,47]),
that is, the total number of spin flips, as a trajectory
observable. In this case, Ws ¼ e−sK −R. While for large
times all that is needed to determine Eq. (8) is the dominant
eigenstate ofWs, for finite times the whole spectrum ofWs
is required.
Finite time statistics from MPS.—The models we con-

sider obey detailed balance. This allows us to write Ws in a
Hermitian form through a similarity transformation inde-
pendent of s [41], Hs ¼ P−1=2WsP1=2, where P1=2 is a
diagonal matrix of probability amplitudes at equilibrium (for
the SSEP, P is the identity). As a consequence, the leading
eigenvalue of H obeys a Rayleigh-Ritz variational principle,
allowing the application of variational methods such as the
density matrix renormalization group [48]. We then write
Eq. (8) as

ZtðsÞ ¼ hψ0jetHs jψ0i; ð9Þ

where jψ0i ¼ P−1=2jssi ¼ ½h−jP1=2�†. It is useful to define
the time-evolved vector jψτi ¼ eτHs jψ0i (τ ≤ t). The parti-
tion function can then bewritten asZtðsÞ ¼ hψ t−τjψτi and, in
particular, can be determined by only evolving the vector
by τ ¼ t=2.
The average dynamical activity (per unit time and site) of

the biased ensemble of trajectories follows from the
partition sum,

kðsÞ ¼ −
1

Nt
d
ds

log½ZtðsÞ�: ð10Þ

We can also calculate time-dependent configurational
observables for any 0 ≤ τ ≤ t,

hOðτÞis ¼ ZtðsÞ−1hψ0jeðt−τÞHsOeτHs jψ0i
¼ ZtðsÞ−1hψ t−τjOjψτi: ð11Þ

In order to compute the time-evolved state jψ ti, we use
methods from quantum many-body physics, in particular,
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matrix product states (MPS) (for reviews, see Refs. [49,50])
[51]. Here we use both variational optimization of MPS
(vMPS, e.g., [25,49]) and time-evolved MPS (tMPS, e.g.,
[53]). Notice that, for long times, jψτi becomes close to the
leading eigenvector of Ws. We exploit this fact to simulate
evolution for long times with higher precision; see
Supplemental Material [54] for details.
In Ref. [32], we used the MPS approximation (from

vMPS) to the leading eigenstate of Hs to construct a near-
optimal dynamics, which when supplemented with trajec-
tory importance sampling [specifically, transition path
sampling [5] (TPS)] allowed us to efficiently simulate
trajectories in large time tilted ensembles. Here we apply
the same scheme, but instead use the time-evolved state
jψ t=2i. We construct a time-independent dynamics that
approximates the optimal (or Doob) dynamics at the center
of finite time trajectories under tilting [57].
Figure 1(a) compares various sampling methods in the

East model at s > 0. The dynamics is active at short times
(due to initial conditions) and inactive at large times
[25,38,41]. We show the activity from the partition sum
calculated via MPS time evolution (black line) as a function
of trajectory length. We also show sampling with TPS with
the original dynamics (red circles); this method only
accounts for the dynamical activity hki at short times
and fails at long times. The methods introduced in
Ref. [32] construct the long time optimal (Doob) dynamics
with the approximate leading eigenstate from vMPS. We
then apply TPS with this dynamics to sample trajectories
for arbitrary time. This accounts for hki at long times [32],
but fails at short times. If we adopt this method, but replace
the MPS used in the auxiliary dynamics with the time-
evolved state (green pentagons), we get accurate results for
the activity for all trajectory lengths. Despite the fact
that the exact Doob dynamics for finite time is, in general,

time-dependent [58], this latter approach with a time-
independent dynamics for each trajectory length t is efficient
enough for TPS to converge to the actual finite time
tilted ensemble, thus correcting any discrepancies. In the
Supplemental Material, we provide a detailed comparison
[54]. Figure 1(b) shows the averaged time-dependant occu-
pations (top) hnðτÞis and instantaneous activity (bottom)
hkðτÞis for some fixed trajectory time t ¼ 100, generated
from the s ensemble at s ¼ 0.1 for both tMPS and
tMPSþ TPS.
Finite time scaling of active-inactive transition.—The

three models we study here display a LD phase transition
[38,40,41,43] in the long time and large size limit between a
dynamical phasewhere activity is extensive in space and one
where activity is subextensive. The finite size scaling
analysis of this transition in the long time limit has been
studied theoretically [40,42,59–61] and numerically [25,60]:
for finite size, the active-inactive transition is smoothed
into a sharp crossover located at scðN; t ¼ ∞Þ > 0, which
decreases as an inverse power of the system size. In general,
however, the location of the transition point depends both on
time and size, scðN; tÞ, but a detailed numerical analysis of
the finite time scaling has not been possible to date due to the
difficulty of simulating efficiently rare trajectories at inter-
mediate times [32]. With the approach presented above we
can now investigate this issue in detail.
Figure 2(a) shows the dynamical activity kðsÞ as a

function of s and inverse time t−1 (East model, top row;
FA model, middle; SSEP, bottom). There is a transition
from a high activity (light) to low activity (dark) as s is
increased, which becomes sharper and moves to smaller s
with increasing time. The point scðN; tÞ (shown by the red
dashed line) is that of the peak in the dynamical suscep-
tibility χðs; tÞ ¼ dkðsÞ=ds. These dynamical phase dia-
grams are reminiscent of those of (first-order) quantum
phase transitions [62], with s as an applied field and the
inverse time as temperature.
The scaling of the transition point is shown as a function

of (inverse) time for multiple system sizes N ∈ ½20; 200� in
Fig. 2(b). For small times the transition point scales
approximately as sc ∼ t−1 for the three models. When time
becomes large enough, finite size effects start to dominate.
For simplicity, we use the approximate form

scðN; tÞ ≈ scðNÞ þ scðtÞ; ð12Þ

where scðNÞ ∼ N−α can be extracted from vMPS [25,27].
For the FA and East models, the exponent α > 1 [25], while
for the SSEP we find the expected α ≈ 2 [40]. In Fig. 2(c),
we show how the scðN; tÞ curves can be collapsed,
allowing us to estimate scðtÞ ∼ t−β. We find β ≈ 1 for all
models.
Also important to the rare event statistics is the prob-

ability distribution of the dynamical activity PtðKÞ. While
for finite times ZtðsÞ and PtðKÞ do not obey a LD principle

(a) (b)

FIG. 1. Demonstration of the methods. East model at c ¼ 0.5,
N ¼ 100, and s ¼ 0.1. (a) Dynamical activity hki from tMPS
(black line), TPS with no auxiliary dynamics (red circles), TPS
with the LD eigenvector auxiliary dynamics via vMPS (blue
squares), and TPS with a tMPS reference dynamics (green
pentagons). (b) Time-dependent occupations (top) and instanta-
neous activity (bottom) from MPS time evolution (black line)
from direct sampling with a tMPS auxiliary dynamics (green
pentagons and bars).
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in time, for large sizes they still obey one in system size,
ZtðsÞ ≍ eNΘðs;tÞ and PtðKÞ ≍ e−NΦtðK=NÞ. We can therefore
obtain the time-dependent rate function ΦtðKÞ through the
Legendre transform

ΦtðkÞ ¼ −max
s

½Θðs; tÞ þ sk�; ð13Þ

where Θðs; tÞ ¼ N−1 logZtðsÞ. From the numerical esti-
mate of ZtðsÞ we can therefore estimate ΦtðK=NÞ for all
times. Figure 2(d) shows the corresponding rate functions

for system size N ¼ 100. For small times, the distribution
of the activity is close to Poissonian (dashed line), in
agreement with the absence of a transition. As time
increases, the rate function broadens into the characteristic
shape of a first-order phase transition [25,38].
Structure of the active phase.—Long time trajectories

with an atypically large activity are known to display an
interesting structure in two of the models we consider here
[25,43,63]. Our finite time method allows us to study how
such structure depends on the trajectory length.

(a) (b) (c) (d)

FIG. 2. Rare event statistics. The rare event statistics for the East model with (top) c ¼ 0.5 and the FA model with (middle) c ¼ 0.2
and (bottom) SSEP. (a) The dynamical activity kðs; tÞ as a function of s and inverse time 1=t for N ¼ 100. The red dotted line indicates
our estimate of the transition point. (b) The transition point for various system sizes N ∈ ½10; 200�. The dotted lines indicate the infinite
time value (see Refs. [25,27]), and the dashed line shows scðN; tÞ ∼ t−1. (c) The same data are shown in (b) but with scðN; tÞ scaled by
scðNÞ and time scaled by N−α, where α is the critical exponent extracted from scðNÞ. The dotted line shows where the y axis is one, and
the dashed line shows t−β. The sum of both lines is given by the dash-dotted line. (d) The estimate of the rate function ΦtðkÞ defined in
Eq. (13). The dashed line shows a Poisson distribution with the equilibrium average as its mean. All of the data are calculated using the
dynamical partition sum ZtðsÞ from tMPS.

(a) (b) (c)

FIG. 3. Structures in the active phase. We show the average occupations at the center of the trajectory hniðt=2Þis for s ¼ −0.1 for the
(a) East model and (b) FA models. The left panels of each show the lattice average for a range of s and t with c ¼ 0.05, while the right
panels show the occupations at each site for (top) c ¼ 0.05 and (bottom) c ¼ 0.5, with s ¼ −0.1. We show the same for the SSEP in
(c) but with the nearest-neighbor correlations Ciðt=2Þ. The right panels are for (top) s ¼ −0.1 and (bottom) s ¼ −1.0. Dotted lines show
the expected value at infinite times. All observables are calculated from the time-evolved MPS jψ t=2i.
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In Fig. 3(a), we show the average occupation at the
midpoint of the dynamics. The left panel shows the lattice-
averaged occupations hnðt=2Þis at time τ ¼ t=2 for ensem-
bles of trajectories with total time t, as a function of s for
various t, at c ¼ 0.05. The panels on the right show the
average spatial profile hniðt=2Þis at s ¼ −0.1 for (top)
c ¼ 0.05 and (bottom) c ¼ 0.5. In both cases, the average
density is spatially featureless at short times, but arranges to
maximize activity at long times. For c ¼ 0.05 it does so by
forming an anticorrelated structure, while these anticorre-
lations are absent for c ¼ 0.5 (cf. the long time case [63]).
Figure 3(b) shows the same for the FA model, where there
is no appreciable structure forming for small c. Notice also
from the left panels the longer times needed to reach the LD
behavior in the East compared to the FA model.
In Fig. 3(c) we quantify the local structure of the SSEP in

terms of the nearest-neighbor correlations

CiðtÞ ¼ hniniþ1ðtÞis − hniðtÞishniþ1ðtÞis; ð14Þ

and the lattice average CðtÞ ¼ ðN − 1Þ−1 PN−1
i¼1 CiðtÞ. The

right panels show a growth of anticorrelated order with
increasing trajectory length toward the “hyperuniform”
arrangement at long times, cf. Ref. [43].
Conclusions.—We have implemented a time evolution

scheme using MPS to study the rare events of one-
dimensional KCMs in finite time trajectories. In this way
we have extended recent efforts on the long timeLD statistics
via TNs to the arguably harder problem of the LDs away
from the long time limit. We showed how to directly
compute dynamical partition sums, and we derived an
efficient sampling scheme for finite time rare trajectories.
Understanding the finite time behavior of dynamical systems
is significant, as the times required to observe long time
behavior can be too large to implement experimentally.
A next step would be to extend these ideas to dimensions
larger than 1. A possibility could be to implement sampling
through two-dimensional TNs, such as projected entangled-
pair states (e.g., [64,65]), which have already proven useful
in studying the LDs in the long time limit of two-dimensional
exclusion processes [28]. While bond dimensions will be
limited in this case, using a time evolution scheme like we
presented here one could approximate the reference dynam-
ics for the center of trajectories (i.e., evolve by etWs=2)
alongside a scheme such as TPS to obtain reliable results.
Another direction would be to apply the methods demon-
strated here to driven problems, such as currents in exclusion
processes. Here we cannot exploit Hermiticity and would
have to compute the time-evolved left and right eigenvectors.
We hope to report on such studies in the near future.
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