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We investigate dynamical fluctuations of transferred magnetization in the one-dimensional lattice
Landau-Lifshitz magnet with uniaxial anisotropy, representing an emblematic model of interacting spins.
We demonstrate that the structure of fluctuations in thermal equilibrium depends radically on the
characteristic dynamical scale. In the ballistic regime, typical fluctuations are found to follow a normal
distribution and scaled cumulants are finite. In stark contrast, on the diffusive and superdiffusive timescales,
relevant, respectively, for the easy-axis and isotropic magnet at vanishing total magnetization, typical
fluctuations are no longer Gaussian and, remarkably, scaled cumulants are divergent. The observed
anomalous features disappear upon breaking integrability, suggesting that the absence of normal
fluctuations is intimately tied to the presence of soliton modes. In a nonequilibrium setting of the
isotropic magnet with weakly polarized step-profile initial state we find a slow drift of dynamical exponent
from the superdiffusive towards the diffusive value.

DOI: 10.1103/PhysRevLett.128.090604

Introduction.—Explaining how phenomenological laws
of physics emerge on macroscopic scales from reversible
microscopic dynamics underneath presents a formidable
task. The challenge only grows in many-body interacting
systems, both in and out of equilibrium, where analytic
results without resorting to assumptions or uncontrolled
approximations are rarely available. This explains, at least
in part, the perpetual fascination with exactly solvable
models and stimulates our quest for nontrivial exact results.
It has long been known that one-dimensional systems

occupy a very special place in this regard, hosting a wide
range of unorthodox phenomena such as lack of conven-
tional thermalization [1–6], anomalous transport behavior
[7–9], and unconventional entanglement properties [10,11].
Integrable models defy ordinary hydrodynamics [12–16]
due to ballistically propagating quasiparticles stabilized by
infinitely many conservation laws. This readily explains
why many of their dynamical properties are markedly
different from generic (i.e., ergodic) systems, such as
nonzero finite-temperature Drude weights [17–22] or
superdiffusive spin transport in models with non-Abelian
symmetries that has sparked great theoretical interest both
in quantum [23–32] and classical [24,33–35] integrable
models; see Ref. [9] for a review. Understanding these
aspects goes beyond just theoretical interest. Experimental
techniques with cold atoms have now finally advanced to the
point to enable the fabrication of various low-dimensional
paradigms [36–43], thereby offering a great opportunity to
directly probe many different facets of nonequilibrium
phenomena.
A more refined information about dynamical processes,

extending beyond hydrodynamics, can be inferred by
inspecting the structure of fluctuating macroscopic

quantities. In this respect, large deviation (LD) theory
[44–46] has cemented itself as a versatile theoretical
apparatus designed to quantify the probability of rare
events. It is quite remarkable that in certain scenarios
the large deviation rate function can be deduced analyti-
cally, including the Levitov-Lesovik formula [47,48], free
fermionic systems [49,50] and field theories [51,52], non-
interacting [53,54] and interacting [55,56] systems with
dissipative boundary driving, conformal field theories
[57,58], in conjunction with a body of exact results from
the domain of classical stochastic gases [59–63]. While in
classical diffusive systems the rate function can be, in
principle, deduced within the framework of macroscopic
fluctuation theory (MFT) [64,65], the resulting equations
typically prove difficult to handle. A general LD theory for
classical and quantum integrable systems on ballistic scales
has been developed in Refs. [66–68].
In spite of tremendous progress, it nonetheless appears

that in deterministic (Hamiltonian) many-body systems of
interacting degrees of freedom there are, except for a
numerical survey in nonintegrable anharmonic chains [69],
no explicit results concerning the nature of typical or large
fluctuations, especially on sub-ballistic scales. This moti-
vates the study of integrable systems, which are promising
candidates to reveal novel unorthodox features due to
their distinct nonergodic properties. Additional inspiration
comes from an earlier study [70] of the anisotropic
quantum Heisenberg chain driven out of equilibrium by
means of Lindbladian baths that hints at anomalous scaling
of higher cumulants in the gapped (i.e., diffusive) phase of
the model (albeit for moderately small system sizes),
suggesting that despite a well-defined diffusion constant,
the gapped Heisenberg chain may not be an ordinary
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diffusive conductor. Efficient simulations of quantum
dynamics are unavoidably hampered by a rapid increase
of entanglement which often precludes a reliable extraction
of asymptotic scaling laws. This shortcoming motivates the
study of classical integrable models where this is no longer
a concern and much longer simulation times are accessible.
In this Letter, we examine fluctuations of spin current

over a finite time interval in a thermodynamic ensemble of
interacting classical spins evolving under a deterministic
integrable dynamics. In our simulations we take full advan-
tage of a symplectic integrator developed in Ref. [71]
which exactly preserves integrability.
Strikingly, in the diffusive and superdiffusive dynamics

regimes we encounter hitherto undisclosed anomalous
fluctuations and divergent scaled cumulants.
Fluctuations on typical scale.—Our main objective is

to characterize the dynamics of magnetization in a one-
dimensional classical spin system governed by a determin-
istic equation of motion for the spin field S≡ ðS1; S2; S3ÞT
(subject to constraint jSj ¼ 1). We are specifically inter-
ested in extended (i.e., thermodynamic) homogeneous
systems of interacting spins in which the third compo-
nent of total magnetization is a globally conserved charge,
Q ¼ R

dx S3ðxÞ, satisfying a local continuity equation
∂tS3ðx; tÞ þ ∂xjðx; tÞ ¼ 0.
In this Letter, we aim to characterize the fluctuations of

the time-integrated spin current density passing through the
origin in a finite interval of length t,

JðtÞ ¼
Z

t

0

dt0 jð0; t0Þ: ð1Þ

Equation (1) represents the net transferred magnetization
between two semi-infinite regions of the system that can be
regarded as a fluctuating macroscopic dynamical variable,
and the main scope of this work is to examine its statistical
properties in thermal equilibrium. While on average there is
no transferred charge, hJðtÞi ¼ 0, the variance of JðtÞ at
large times times grows algebraically with an equilibrium
dynamical exponent z,

h½JðtÞ�2ic ∼ t1=z; ð2Þ

where h•ic denotes the connected part of the n-point
correlation in thermal equilibrium. For simplicity, we shall
subsequently compute averages with respect to an unbiased
stationary measure, representing the high-temperature limit
of the canonical Gibbs ensemble.
Notice that typical fluctuations of JðtÞ are of the order

Oðt1=2zÞ. In order to quantify them, we introduce the
dynamical distribution PðjjtÞ of the scaled integrated
current density

jðtÞ≡ t−1=2zJðtÞ; ð3Þ

and subsequently determine the stationary probabi-
lity distribution that may emerge at large times, PðjÞ ¼
limt→∞PðjjtÞ, normalized as

R
PðjjtÞdj ¼ 1. We shall

characterize it by its cumulants κn ¼ limt→∞κnðtÞ,

κnðtÞ≡ h½jðtÞ�nic ¼ t−n=2zh½JðtÞ�nic: ð4Þ

By the time-reversal symmetry of an equilibrium state PðjÞ
is symmetric and hence κ2nþ1 ¼ 0 for all n ∈ N. If all
κn≠2 ¼ 0, then PðjÞ takes the form of a Gaussian and
typical fluctuations are said to be normal. For rapidly
decaying temporal correlations of local currents, this
property, for z ¼ 1, is indeed guaranteed by the central
limit theorem, as, e.g., in rule 54 dynamics [72]. In
Hamiltonian systems, temporal correlations of currents
of conserved charges are invariably present and very little
is known about their clustering properties, therefore no
general conclusions about the dynamical exponent and
Gaussianity of JðtÞ can be drawn. However, in nonintegr-
able (chaotic) systems having the hydrodynamic mode with
zero velocity, one may expect spatiotemporal correlations
to follow diffusive phenomenology, implying dynamical
exponent z ¼ 2 and Gaussian fluctuations.
Fluctuations in an integrable magnet.—We sub-

sequently consider the anisotropic Landau-Lifshitz magnet,
one of the best studied paradigms of interacting spins. In
continuous space-time, the model is described by the
equation of motion

∂tS ¼ S × ∂2
xSþ S × JS; ð5Þ

with anisotropy tensor J ¼ diagð0; 0; δÞ, representing one
of the simplest completely integrable PDEs [73,74].
Equation (5) is particularly convenient since tuning the
anisotropy δ permits the study of three distinct dynamical
regimes [24,34,71]: (i) the “easy-plane” ballistic regime
(z ¼ 1, δ < 0), (ii) the easy-axis diffusive regime (z ¼ 2,
δ > 0), and, finally, (iii) the isotropic point with super-
diffusive spin transport (z ¼ 3=2, δ ¼ 0)—in exact corre-
spondence with the dynamical phases of the Heisenberg
XXZ spin-1=2 chain [9]. Indeed, Eq. (5) is known to be the
effective evolution law for the semiclassical eigenstates
(i.e., spin waves of large wavelengths) in the quantum spin
chain (see, e.g., Refs. [75,76]).
We have performed numerical simulations on the lattice

counterpart of Eq. (5) (details in the Supplemental Material
[77]). One should be aware that a naïve lattice discretization
of Eq. (5) does not preserve integrability, which may
introduce certain spurious effects that affect dynamical
properties at large times. This can be overcome by taking
advantage of an exact symplectic integrator based on an
integrable regularization in discrete space-time constructed
in Ref. [71], thereby significantly boosting efficiency of
numerical integration (we have verified that the results do
not qualitatively change upon varying the time step τ,
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see Fig. 2). The accuracy of our data is only subject to
statistical errors due to the size Navg of an ensemble of
initial conditions sampling the unbiased equilibrium infin-
ite temperature state.
We start by assessing the fluctuations of transferred

magnetization JðtÞ ¼ P
x>0½S3xðtÞ − S3xð0Þ� by computing

the dynamical distribution of the integrated current PðjjtÞ,
rescaled to the timescale of typical fluctuations. These
results are collected in Fig. 1. Most notably, we observe a
significant deviation from Gaussianity in the diffusive case
[Fig. 1(c)]. In all other regimes of interest, fluctuations
appear to be fairly consistent with a Gaussian profile. To
quantify the degree of non-Gaussianity we focus next on
the fourth cumulant κ4ðtÞ, see Fig. 2, where we observe
(approximately) logarithmic divergence of κ4 in the dif-
fusive (i.e., easy-axis) regime, while in other cases κ4ðtÞ
converges to zero.

Long-time growth of cumulants.—The discernible depar-
ture from Gaussianity indicates that spin transport in the
diffusive phase escapes the usual paradigm of normal
diffusion, as conventionally describedwithin the framework
of the MFT. In the scope of LD theory, another universal
feature of stochastic diffusive systems (such as, e.g., simple
exclusion processes) is the existence of the scaled cumulants
snðtÞ¼ t−1=zh½JðtÞ�nic¼ðd=dλÞnFðλjtÞjλ¼0, whereFðλjtÞ≡
t−1=z logheλJðtÞi. Following the standard prescription in
the literature, the limits of scaled cumulants can be com-
puted from the series expansion of the scaled cumu-
lant generating function (SCGF) FðλÞ ¼ lim→∞FðλjtÞ as
limt→∞snðtÞ ¼ ðd=dλÞnFðλÞjλ¼0. This scheme, however,
hinges on certain subtle requirements [79] which, as we
argue next, may be violated in integrable deterministic
dynamics. Specifically, we show in Fig. 3 that the scaled
cumulants diverge in the isotropic and easy-axis regimes of
our model, i.e., when z > 1. At the isotropic point δ ¼ 0we
detect a robust algebraic divergence of the sixth scaled
cumulant s6ðtÞ ∼ tν6 with ν6 ≈ 1.7, in turn implying diver-
gent κ6ðtÞ ¼ t−4=ð2zÞs6ðtÞ. It is worth noting that such a
“higher-order discrepancy” of a tiny amplitude κ6 ⪅ 10−2 on
the accessible timescale (by an order of magnitude smaller
than in the diffusive regime, cf. Fig. 2) can hardly be
discerned from Fig. 1(b), where no noticeable deviations
from Gaussianity are visible. Lastly, in the easy-plane (i.e.,
ballistic) regime, the scaled cumulant s4ðtÞ converges to a
finite value, see inset in Fig. 3. Although a reliable extraction
of higher scaled cumulants is obstructed by the rapidly
growing spread of partial averages, our data (see
SupplementalMaterial [77]) give no indications of divergent
scaled cumulants. We finally note that upon (strongly)
breaking integrability, scaled cumulants are expectedly
finite for any value of anisotropy (see Ref. [77]).
Fluctuations out of equilibrium.—A convenient setting

that is widely used for studying fluctuations of charge
transfer in one-dimensional systems away from equilibrium
is the two-partition protocol. Several important analytic
results have been obtained in this way, predominantly in the
domain of stochastic systems [62,80–84]. To study

FIG. 1. Convergence of distributions PðjjtÞ for various dynamical regimes: (a) integrable easy-plane regime with ballistic exponent
z ¼ 1, (b) integrable isotropic model with superdiffusive exponent z ¼ 3=2, and (c) integrable easy-axis regime with diffusive exponent
z ¼ 2. For comparison, (d) is a nonintegrable isotropic trotterization with z ¼ 2. Best-fit Gaussian distributions are depicted by full
orange lines. Time increases from gray (t ¼ 40) to black (t ¼ 500). Simulation parameters: time step τ ¼ 1, length L ¼ 210, anisotropy
ϱ ¼ γ ¼ 1, Navg ¼ 3 × 105. The models and conventions are given in Ref. [77].

FIG. 2. Time dependence of κ4ðtÞ in different dynamical regimes
characterized by the dynamical exponent z: diffusive easy-axis
regime (red curves, indicating dependence on time step
τ ∈ f1; 0.3; 0.1; 0.05; 0.01g), isotropic point (green), ballistic
easy-plane regime (blue), and diffusive isotropic non-integrable
model (orange). Dashed black line indicates a log t dependence as a
guide to the eye. Other simulation parameters: time step τ ¼ 1,
length L ¼ 211, anisotropy ϱ ¼ γ ¼ 1, Navg ¼ 3 × 105. The mod-
els and conventions are given in the Supplemental Material [77].
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fluctuations of transferred magnetization, one initializes the
system in two semi-infinite partitions in equilibrium states
at equal temperatures and opposite chemical potentials�μ,
related to magnetization densities via hS3iðμÞ ¼ cothðμÞ−
μ−1. The ensuing dynamical interface region expands
asymptotically as x ∼ t1=ϰ while reaching a “local quasista-
tionary state.” Owing to a finite bias (i.e., a jump in the
chemical potential μ), the average integrated current does
not vanish and (by assuming algebraic asymptotic scaling)
we can accordingly write hJðtÞinoneq ∼ t1=ϰ.
Regarding a practical implementation there are now two

major stumbling blocks that one has to confront: (I) our
simulations reveal (see Fig. 4) that the running (i.e., time
dependent) algebraic exponent ϰ converges very slowly
towards the expected value at late times, thereby preventing
reliable estimation of the stationary distribution PðjÞ of the
rescaled current; (II) due to absence of translational
symmetry in the initial state, the sampling size is reduced
by a factor of system length L compared to the equilibrium
setting. It is nonetheless instructive to expand on point (I).
First, we wish to point out that the nonequilibrium
dynamical exponent ϰ should not be a priori identified
with the equilibrium exponent z that governs the asymp-
totic growth of the variance [see Eq. (2)]. As we shortly
demonstrate, this is a delicate matter at the isotropic point
(δ ¼ 0) where the equilibrium dynamical exponent zKPZ ¼
3=2 of the Kardar-Parisi-Zhang (KPZ) equation [85] is
known to be “protected” by a global non-Abelian sym-
metry [9,35] that has to be preserved both at the level of
the time propagator and the underlying equilibrium state.

Despite the fate of KPZ scaling becomes less obvious upon
departing from equilibrium, a recent experimental study
suggests that it might survive [43].
Implementing a two-partition protocol, we numerically

extract the running dynamical exponent ϰ as a function of μ
as shown in Fig. 4. For any finite simulation time tϰ, we
observe a smooth crossover from ϰ ≈ 3=2 in the vicinity of
μ → 0 towards the diffusive exponent ϰ ≈ 2 upon
approaching strong polarizations μ → ∞. This indicates
that in spite of a pronounced μ-dependent transient, the
running dynamical exponent eventually saturates to ϰ ¼ 2.
This analysis is aligned with theoretical expectation: KPZ
physics of spin transport is sensitive to explicit breaking of
rotational symmetry (here by the initial nonequilibrium
state); our simulations show that the broken symmetry is
not dynamically restored, and the dynamics is more
reminiscent of the melting magnetic domain at zero
temperature [86,87].
Conclusion.—We numerically investigated the proper-

ties of fluctuations in various dynamical regimes of the one-
dimensional lattice Landau-Lifshitz magnet by computing
the distribution of the time-integrated spin current and
analyzing the time dependence of its cumulants. Most
strikingly, we encountered non-Gaussian typical fluctua-
tions on sub-ballistic scales, comprising both the diffusive
easy-axis regime and the isotropic point with superdiffusive
spin transport (where the effect is much less pronounced).
This follows as a consequence of divergent scaled cumu-
lants, which moreover imply that the SCGF is not a
generator of scaled cumulants. While two-point functions
in the easy-axis (Z2-symmetric) and isotropic [SU(2)-
symmetric] regimes have previously been found to

FIG. 4. Estimated dynamical exponent ϰ depending on chemi-
cal potential μ for different integration times tϰ (with gray line
showing zKPZ ¼ 3=2). (inset) Time dependence of the estimated
exponent for μ ∈ f0.3; 0.6; 1.0g. Simulation parameters: τ ¼ 1,
L ¼ 212, Navg ¼ 3 × 105 (main figure), 106 (inset). The models
and conventions are given in Ref. [77].

FIG. 3. Temporal growth of scaled cumulants snðtÞ (absolute
values) at (main figure) the isotropic point (z ¼ 3=2) and (inset) in
the easy plane regime (z ¼ 1). Faint lines show Npar partial
averages, each over Navg initial random spin configurations. Full
line is the total average over Npar × Navg initial configurations.
Dashed black line indicates the scaling s6ðtÞ ∼ tν6 with ν6 ≈ 1.7.
Simulation parameters: time step τ ¼ 1, length L ¼ 211 (main
figure), 210 (inset), anisotropy γ ¼ 1 (inset), Navg ¼ 3 × 105,
Npar ¼ 25 (main figure), 102 (inset). The models and conventions
are given in Ref. [77].
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excellently match [25,27,34,38,71], respectively, the dif-
fusive (Gaussian) and KPZ (Prähoffer-Spohn [88]) scaling
functions, our new data show that higher-point functions
(or distribution of fluctuations) are distinct from diffusive
and KPZ universality classes. In particular, as the KPZ
equation manifestly refers to out of equilibrium, breaking
detailed balance, the distribution of finite time fluctuations
in the KPZ equation are always skewed (e.g., Tracy-Widom
or Baik-Rains, depending on the initial condition) unlike in
our equilibrium scenario, where they are symmetric.
On the ballistic timescale, i.e., at finite magnetization

density or in the easy-plane regime at zero magnetization,
we found no traces of irregular or non-normal behavior
(apart from considerably slower convergence of averages
compared to a nonintegrable chain). By explicitly breaking
integrability we restored ergodicity and we expectedly
recovered both the Gaussian form of typical fluctuations
and finite scaled cumulants. This suggests that the observed
singularity of the SCGF is subtly linked to the presence of
interacting quasiparticles (solitons, see Refs. [74,89],
whose asymptototic stability is ensured by a hierarchy of
nontrivial conservation laws) which we envision to be
responsible for “weak” clustering of temporal multipoint
current correlations. This possibility has been discussed in
Ref. [67], where it is argued that anomalous fluctuations
could occur on the ballistic scale along the ray correspond-
ing to an isolated co-propagating normal mode. As per
Ref. [67], however, a continuous spectrum of normal
modes (which is to be anticipated in the Landau-Lifshitz
magnet, by analogy to the quantum Heisenberg chain) need
not necessarily be detrimental for Gaussianity. Concerning
the ballistic regime, the absence of any irregularities is thus
consistent with the described scenario. Although the exact
expressions for low-order cumulants have been recently
derived [68] by employing the “generalized hydrodynam-
ics” [90,91], their explicit evaluation crucially relies on the
knowledge of the “flux Jacobian” [92] which for the
particular case of the anisotropic Landau-Lifshitz model
is currently out of reach. The discernible divergence of
scaled cumulants that we captured on sub-ballistic scales,
however, goes beyond the current capabilities and for the
time being remains entirely elusive. In this view, the most
pressing question is to identify a microscopic mechanism
responsible for the observed anomalous behavior.
Our hope is that the technical difficulties we encountered

in extending our analysis to the nonequilibrium setting can
be surmounted, as it would help tremendously to establish a
more complete phenomenological picture. It would like-
wise be valuable to complement the earlier findings of
Ref. [70] by a similar analysis for the case of the anisotropic
quantum Heisenberg chain. Our expectation here is that the
anomalous structure of dynamical fluctuations in sub-
ballistic regimes will also surface at the quantum level.
Finally, amidst many recent experimental breakthroughs
we firmly believe the time is ripe to initiate a pursuit to find
irregular features in fluctuating macroscopic quantities.
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