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Entanglement entropy (EE) contains signatures of many universal properties of conformal field theories
(CFTs), especially in the presence of boundaries or defects. In particular, topological defects are interesting
since they reflect internal symmetries of the CFT and have been extensively analyzed with field-theoretic
techniques with striking predictions. So far, however, no lattice computation of EE has been available.
Here, we present an ab initio analysis of EE for the Ising model in the presence of a topological defect.
While the behavior of the EE depends, as expected, on the geometric arrangement of the subsystem with
respect to the defect, we find that zero-energy modes give rise to crucial finite-size corrections. Importantly,
contrary to the field-theory predictions, the universal subleading term in the EE when the defect lies at the
edge of the subsystem arises entirely due to these zero-energy modes and is not directly related to the
modular S matrix of the Ising CFT.
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Entanglement plays a central role in the development of
long-range correlations in quantum critical phenomena.
Thus, quantification of the entanglement in a quantum-
critical system provides a way to characterize the universal
properties of the critical point. The von Neumann entropy is
a natural candidate to perform this task. For zero-temper-
ature ground states of 1þ 1D quantum-critical systems
described by conformal field theories (CFTs), the von
Neumann entropy [equivalently, entanglement entropy
(EE)] for a subsystem exhibits universal logarithmic scaling
with the subsystem size [1,2]. The coefficient of this scaling
determines a fundamental property of the bulk CFT: the
central charge. For finite systems with boundaries at a
conformal critical point, the EE receives universal, sub-
leading, boundary-dependent contributions, the so-called
boundary entropy [3]—a central concept in a variety of
physical problems both in condensed matter physics and
string theory. This boundary contribution to the EE
provides a valuable diagnostic for identifying the different
boundary fixed points of a given CFT [2,4–7].
While entanglement has been analyzed extensively in

CFTs with and without boundaries, its behavior is much
less understood in the presence of defects. The question is
particularly intriguing since entanglement measures may
provide an alternate way to classify defects in CFTs.

Of particular interest are topological (perfectly transmissive)
defects [8–12]. These defects commutewith thegenerators of
conformal transformations and thus can be deformedwithout
affecting the values of the correlation functions, as long as
they are not taken across field insertions (hence the moniker
topological). They reflect the internal symmetries of the
CFTand relate the order-disorder dualities of the CFT to the
high-low temperature dualities of the corresponding off-
critical model [10,13,14]. They also play an important role in
the study of anyonic chains and in the correspondence
between CFTs and three-dimensional topological field
theories [15].
It is natural to analyze EE in the presence of topological

defects. Two distinct geometries have been considered in
the literature: (i) where the defect is entirely within the
subsystem and (ii) where the defect is located precisely at
the interface between the subsystem and the rest. While
both cases exhibit identical leading-order logarithmic
scaling with subsystem size, they differ when subleading,
i.e., Oð1Þ, corrections are taken into account. In the first
case, after usual folding maneuvers, the subleading term
can be equated to a boundary entropy with double the bulk
degrees of freedom [16–18]. In this way, the subleading
correction to symmetric EE can be computed analytically
for all rational CFTs [19]. In the second case, the subleading
term for the interface EE is much more difficult to obtain.
Field-theory computations based on the replica trick for
the free, real boson [20], the free, real fermion [21] (see also
[22–24]), and generalization to all rational CFTs [19]
using the corresponding twisted torus partition functions
[8] provide results whose validity have never been tested
with ab initio lattice computations. Such a computation is
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particularly important since the mapping to the twisted
torus partition function does not faithfully capture the
geometric arrangement of the subsystem with respect to
the defect. This is important for subleading terms in
the interface EE which are, in fact, the signatures of the
topological defect.
Our goal, in this Letter, is to investigate the question in

the simplest possible case, the Ising model, using ab initio
calculations. These calculations are more complex than is
usually the case for EE due to the presence of zero-
energy modes. The latter are a salient feature of the
topological nature of the defect. While the effects of zero
modes have been extensively quantified in gapped
systems due to their relevance in topologically ordered
systems, the same is much less understood in the critical
systems. Here, we show that these zero modes give rise
to nontrivial contributions to the EE when the subsystem
size is comparable to the size of the whole system,
similar to the case of a periodic ring of free fermions
[25,26]. Thus, these zero modes profoundly affect cor-
rections to scaling. After the role of these zero modes is
properly taken into account, we find results that are as
expected for case (i), but are not compatible with the
formulas proposed in the string- and field-theory liter-
ature [19,21] for case (ii).
The Ising model provides a particularly appropriate test

bed for the EE in the presence of topological defects due to
the following. First, the lattice Hamiltonians are well
understood [16,27]. Second, the zero-mode structure is
the simplest and, yet, sufficient to explain the main
concepts. Third, the defect Hamiltonian can be mapped,
after Jordan-Wigner (JW) transformation, to a bilinear
fermionic Hamiltonian. The latter can be diagonalized
semianalytically and leads to very accurate predictions
of EE [28–30]. To emphasize the nontrivial nature of the
topological defect, we compare our results with the non-
topological defects in the model.
There are two nontrivial classes of defects in the Ising

CFT: energy (ϵ) and duality (σ). We consider a periodic
Ising chain with the defect concerning the spins at sites L
and 1 [27,31,32]. The Hamiltonians are Hϵ;σ ¼ H0 − hϵ;σ
(see Fig. 1). Here, the bulk Hamiltonian term H0 ¼
−
P

L−1
i¼1 σxi σ

x
iþ1=2 −

P
L−1
i¼1 σzi =2. The two defect terms are

hϵ ¼ bϵσxLσ
x
1=2þ σzL=2 and hσ ¼ bσσ

y
Lσ

x
1=2 [33]. The

energy defect consists of one bond with altered strength
bϵ connecting spins at sites L and 1. In particular, bϵ ¼ 0,
þ1, and −1 correspond to Ising models with open,
periodic, and antiperiodic boundary conditions (BCs),
respectively. Unlike the energy defect, the duality defect
consists of a σyLσ

x
1 interaction [35]. Equally important,

there is no transverse field at the Lth site. The duality defect
for bσ ¼ 1 (equivalently bσ ¼ −1, which is related by a
local unitary rotation) is the topological defect for the
Ising CFT.

Next, we perform a JW transformation: γ2k−1 ¼
σxk

Q
k−1
j¼1 σ

z
j, γ2k ¼ σyk

Q
k−1
j¼1 σ

z
j, where γj’s are real,

Majorana fermion operators obeying fγj; γkg ¼ 2δj;k. In
the fermionic language, the defect Hamiltonians are
Hf

ϵ;σ ¼ Hf
0 − hfϵ;σ , where

Hf
0 ¼ i

2

XL−1

j¼1

γ2jγ2jþ1 þ
i
2

XL−1

j¼1

γ2j−1γ2j; ð1Þ

hfϵ ¼ ibϵ
2
γ2Lγ1−

i
2
γ2L−1γ2L; hfσ ¼−

ibσ
2
γ2L−1γ1: ð2Þ

Here we have restricted ourselves to the symmetry sector
Q ¼ Q

L
j¼1 σ

z
j ¼ 1 [36]. For the energy defect, from the

definition of Hf
ϵ , we recover the well-known fact that the

periodic (antiperiodic) coupling at the boundary for the spin
model corresponds to antiperiodic (periodic) coupling for
the fermionic model. In particular, the periodic fermionic
model (bϵ ¼ −1) contains two nonlocal Majorana zero
modes, which together are responsible for the twofold
degenerate ground state of the fermionic model. For the
duality defect, the operator γ2L does not occur in Hf

σ . It
commutes with the Hamiltonian ½γ2L;Hf

σ � ¼ 0 and
anticommutes with the conserved Z2 charge
fγ2L;Qg ¼ 0. Thus, it is a zero mode of the model that
is perfectly localized in space. It has a partner zero mode
that is completely delocalized: ΛðbσÞ ¼

P
L
k¼1 γ2k−1þ

bσ
P

L−1
k¼1 γ2k. Note that the zero modes exist for all values

of bσ and are not special features of the topological point.

FIG. 1. Schematic of a single defect in the critical Ising chain
with periodic boundary conditions in the spin (left) and fermionic
(right) picture. Away from the defect, the Hamiltonian contains
nearest-neighbor ferromagnetic σxi σ

x
iþ1 interaction (black lines)

and on site transverse field σzi (blue lines). The defect (purple
box) concerns the spins located at sites L and 1. The energy
(duality) defect part of the Hamiltonian is bϵσxLσ

x
1=2þ σzL=2

(bσσ
y
Lσ

x
1=2). After Jordan-Wigner transformation, the ferromag-

netic coupling corresponds to an interaction of the form γ2iγ2iþ1,
while the transverse field corresponds to γ2i−1γ2i. For the duality
defect, there is a zero mode localized at γ2L. Another zero
mode is delocalized throughout the system (see below).
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The fermionic Hamiltonian also reaffirms a CFT result
[27]:Hf

σ describes a chain of 2L − 1Majorana fermions or,
equivalently, L − 1=2 spins. This is important for quantify-
ing finite-size effects.
Now, we compute symmetric and interface EEs for the

ground states of the fermionic HamiltoniansHf
ϵ;σ. Since the

latter are bilinear in the fermionic operators, we compute
the relevant EEs from the ground-state correlation matrix
[28–30]. The latter is calculated from the ground state by
filling up the negative energy states. The method is unam-
biguous in the absence of zero-energy modes. However, in
the presence of the latter (e.g., bϵ ¼ −1 or any bσ), it raises
the following question: are the zero-energy states empty or
occupied in the ground state? Yet another possibility is to
consider an incoherent superposition of filled and empty
states. This leads to the total system being in a mixed state,
but is appropriatewhen taking the zero-temperature limit of a
thermal ensemble [25]. The question is crucial to the
computation since zero-energy modes nontrivially affect
the EE. For bϵ ¼ −1, the zero modes give rise to nontrivial
corrections to the EE of a subsystem of size r within
a total system of size L [25,26]. The correction ΔSðr=LÞ ¼
ðπr=LÞ R∞

0 tanhðπrh=LÞ½cothðπhÞ − 1�. For r ≪ L, the EE
is oblivious to the existence of the two nonlocal zero modes
spread throughout the system: ΔS ≃ π2r2=12L2 → 0. The
situation changes as the subsystem occupies an appreciable
fraction of the total system (r ∼ L) culminating in
ΔSðr ¼ LÞ ¼ ln 2, the latter being the entropy of the twofold
degenerate ground state of a periodic chain of fermions.
Below, we present analogous results for the topological
defect considering separately the cases when the total system
is in a pure andmixed state (see SupplementalMaterial [37]).
First, we compute the symmetric EE (Fig. 2). The results

for bϵ ¼ 1 (no defect) are shown with blue crosses. The
symmetric EE exhibits the expected logarithmic scaling:
Ssðbϵ ¼ 1Þ ¼ ðc=3Þ ln½ðL=πÞ sinðπr=LÞ� þ S0 for all val-
ues of r=L. We set the lattice spacing to 1 throughout this
Letter. Fitting this expression yields the expected central
charge c ≃ 0.5 and S0 ≃ 0.478. The maroon (green) hex-
agons corresponds to the symmetric EE for bϵ ¼ −1
(bσ ¼ 1) when the total system is in an incoherent super-
position of the zero-energy states being filled and empty.
Compared to Ssðbϵ ¼ 1Þ, the symmetric EEs (Sms , m
denoting the total system being mixed) for the two cases
get an additional contribution of ΔSðr=LÞ [26] and
ΔSðr=LÞ=2þ ðln 2Þ=2. Thus, when r=L ≪ 1, for both
bϵ ¼ −1 and bσ ¼ 1, Sms exhibits the expected logarithmic
dependence with c ≃ 0.5 (left panel). However, the offset
S0 for Sms ðbσ ¼ 1Þ is ðln 2Þ=2 higher. This higher offset
unambiguously distinguishes the topological defect from
the energy defect and is because of the localized unpaired
Majorana zero mode at the center of the subsystem (the
result will be the same as long as the defect lies within and
not at the edge of the subsystem). This is consistent with the
identification of this defect problem to a boundary CFT

problem at the “continuous Neumann boundary fixed
point” after folding, with the corresponding g function ¼ffiffiffi
2

p
[16] (see also Ref. [38]). This should be compared with

the “continuous Dirichlet boundary fixed point” (bϵ ¼ −1
case), which has g function ¼ 1 and, thus, no additional
boundary entropy contribution. For bσ ¼ 1, increasing r=L
leads to a further offset of ΔSðr=LÞ=2 due to the con-
tribution from the second nonlocal zero mode. Here, the
factor of 1=2 accounts for the difference in the number of
nonlocal zero modes in the bϵ ¼ −1 and bσ ¼ 1 models.
The maroon squares (green diamonds) correspond to the
symmetric EEs obtained by keeping the zero-energy state
empty (denoted by Sps , p denoting the total system being
pure; the results are identical for the filled case). Now, the
results for bϵ ¼ �1 are indistinguishable. However, com-
pared to the case without defects, Sps ðbσ ¼ 1Þ exhibits a
ΔSð1 − r=LÞ=2 offset. For r ≪ L, this again leads to the
offset S0 being ðln 2Þ=2 higher than the other cases. For
r ∼ L, the Sps diminishes compared to the case when the
total system is mixed due to the purity of the total system.
Next, we compute the interface EE (Fig. 3), where one

end of the subsystem (of size r) is located at the defect and
the other end sweeps through the system (of size L) [39].
For bϵ ¼ −1, the results are identical to the symmetric case.
This is expected since the resulting model is just a
fermionic model with periodic BC and there is no

FIG. 2. Results for the symmetric EE (Ss) for a periodic chain
of size L ¼ 3000with a single defect and 10 < r < 100 (left) and
100 < r < L=2 (right). The blue crosses are obtained for bϵ ¼ 1
(i.e., no defect). The maroon (green) hexagons are for the energy
defect bϵ ¼ −1 (duality defect bσ ¼ 1), when the total system is
in a mixed state. The differences with Ssðbϵ ¼ 1Þ are ΔSðr=LÞ
and ΔSðr=LÞ=2þ ðln 2Þ=2 for the two cases. The corresponding
predictions are denoted by maroon and green pluses. Compared
to bϵ ¼ −1, the EE for bσ ¼ 1 has an additional offset ðln 2Þ=2
even for r=L → 0 due to the zero mode γ2L localized at the center
of the interval. As r=L increases, the EE for bσ ¼ 1, due to the
single nonlocal zero mode, Λðbσ ¼ 1Þ, receives a contribution
half as large as that for bϵ ¼ −1, which has two such modes. The
maroon squares (green diamonds) present the results when the
total system is in a pure state (the zero-energy state being filled or
empty) as opposed to a mixed state. The results for bϵ ¼ �1 are
indistinguishable. However, relative to the energy defect, the
bσ ¼ 1 shows an offset ΔSð1 − r=LÞ=2, which again reduces to
ðln 2Þ=2 for r=L ≪ 1.
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difference between symmetric and interface EEs. The
results for bσ ¼ 1 are the same for the total system in a
mixed (green hexagons) and pure (green diamonds) state.
Then, Sm;p

I ðbσ ¼ 1Þ is given by the EE of an Ising chain of
length L − 1=2 without any defects [SI ;L−1=2ðbϵ ¼ 1Þ]
together with an offset. The first contribution to this offset
is ΔS½r=ðL − 1=2Þ�. It arises as the subsystem size grows
and becomes aware of the nonlocal zero mode ΛðbσÞ in the
chain of length L − 1=2. The second contribution,
δr;Lðln 2Þ=2, arises only when r ¼ L. This is due the
localized zero mode γ2L, which contributes only when
the subsystem covers the entire system. The resulting
prediction is shown with orange pluses. For comparison,
we have also shown the curves obtained by computing the
corresponding offsets for the system size L (green pluses).
For r not close to L, both predictions work well. However,
for L − r ∼ 1, only the computation with system size
L − 1=2 leads to the correct predictions (see inset). The
field-theory computations are usually done for 1 ≪ r, L
with r not too close to L. For definiteness, we consider
the scaling of SIðr ¼ L=2Þ with lnL [19,21]. Fitting to

SIðr ¼ L=2Þ ¼ ðc=3Þ lnLþ S̃0 [40] yields the expected
central charge c ≃ 0.5 for all the curves. Recall that, for
0 ≤ bσ < 1, the coefficient of lnL is ceff=3, where the
“effective central charge” ceff ∈ ½0; 1=2Þ [21,22]. The
difference of the offsets S̃0 between bϵ ¼ −1 and bϵ ¼ 1

cases is 2ΔI ¼ ΔSð1=2Þ ¼ −1=2þ ln 2 or 0 depending on
the total system being in a mixed or pure state. For
the topological case, both pure and mixed states, the
corresponding offset difference is ΔI ¼ ΔSð1=2Þ=2 ¼
−1=4þ ðln 2Þ=2. Importantly, this offset occurs entirely
due to a “finite-size effect” correction arising due to the
existence of nonlocal zero modes and bears no relationship
to the specific modular S-matrix elements predicted in
Refs. [19,21].
To summarize, we computed the symmetric and interface

EEs for the Ising CFTwith a topological defect taking into
account the subtle effects of the zero modes on the EEs. We
showed that, while both the EEs exhibit identical leading-
order logarithmic scaling, the subleading Oð1Þ corrections
are of completely different origin. The subleading term
[¼ ðln 2Þ=2] for the symmetric EE is related to the g
function of the corresponding defect at the boundary in
the folded picture. However, the corresponding term
[ΔSðr=LÞ=2] in the interface EE arises only when the
subsystem occupies a finite fraction of the total system and
is entirely due to the local and nonlocal zero modes of the
topological defect Hamiltonian. In the limit r ≪ L, there is
no additional offset compared with the case without defect.
The interface EE result is in sharp contrast with the existing
predictions in terms of the modular S matrix of the CFT
[19,21], which predict an offset equal to − ln 2 instead. We
also computed the EEs in the case of open (free) boundary
conditions with a defect at the center of the chain (see
Supplemental Material [37]). The results for symmetric EE
were identical to that obtained for the periodic chain. The
offset interface EE is the same as for the periodic chain
when the total system was pure. The total system being
mixed contributes another ðln 2Þ=2 to the offset.
Several features of the topological defect persist away

from the topological point, i.e., bσ ≠ 1, and even away from
the conformal critical point. We plan to address some of
these questions elsewhere. Defect Hamiltonians for other
rational CFTs contain a more complicated set of zero
modes [41]. The question of subleading corrections in EEs
for these models remains open. Finally, advancements in
measurement of Rényi entropies in engineered quantum
systems [42,43] and quantum simulation [44] can lead to
potential verification of our analytical predictions.

We thank Natan Andrei, Pasquale Calabrese,
Christopher Herzog, Ingo Peschel, Frank Pollmann, and
David Rogerson for discussions. A. R. acknowledges
support from a grant from the Simons Foundation
(825876, TDN). H. S. was supported by ERC Advanced
Grant NuQFT.

FIG. 3. Left: results for the interface EE (SI ) for a periodic
chain of L ¼ 500 with a single defect. One end of the subsystem
is at the defect and the other end sweeps through the system. The
bϵ ¼ −1 case, both when the system is in an incoherent super-
position (maroon hexagons) and a pure state (maroon squares), can
be directly understood from the symmetric EE (Fig. 2). The
topological defect results are identical for the mixed (green
hexagons) and pure (green diamonds) total system state. Then,
the interface EE is best compared to that of a spin chain of size
L − 1=2 without defects [see Fig. 1 and discussion below Eq. (2)].
The difference between the two EEs is ΔS½r=ðL − 1=2Þ� þ
δr;Lðln 2Þ=2 (orange pluses). For comparison, the corresponding
predictions obtained by comparing to size-L chain without defect
(green pluses) are also plotted. For r not too close to L, the
difference is negligible. But, enlarging around r ∼ L (inset) makes
the difference manifest. Right: we show the scaling of the interface
EE for r ¼ L=2 as a function of lnL. Every curve exhibits the same
leading-order scaling yielding a central charge c ≃ 0.5. However,
the offset with respect to no defect for bϵ ¼ −1 is ΔSð1=2Þ ¼
−1=2þ ln 2 when the total system is mixed and 0 when pure. On
the other hand, the corresponding offsets for both pure and mixed
cases for bσ ¼ 1 are ΔSð1=2Þ=2 ¼ −1=4þ ðln 2Þ=2.
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